
A Suffix Tree or
Not a Suffix Tree?

Tatiana Starikovskaya & Hjalte Wedel Vildhøj

IWOCA 2014
October 16

1

Higher School of Economics 
Russia

Technical University of Denmark

Suffix Trees
abbababbba
0 1 2 3 4 5 6 7 8 9

2

Suffix Trees$-
abbababbba
0 1 2 3 4 5 6 7 8 9

$

$
10

9

$
10

$

$
$

$ $ $
$

$
8

$
7

3

What do suffix trees look like?

4

What does suffix trees look like?

YES YES
YES

YESNO

NO

NO

5

Terminology
NO

YES

T is not a suffix tree

T is realized by
babbcbbca

T is a suffix tree

S=

6

ababaaa$
or by

T is a $-suffix tree

S’=

Terminology
NO

YES

T is not a suffix tree

T is realized by
babbcbbca

T is a suffix tree

S=

6

The Suffix Tree
Decision Problem

An unlabeled ordered tree T  
on n nodes
YES if T is a suffix tree
NO otherwise

Output:

Input: ?

7

The Suffix Tree
Decision Problem

An unlabeled ordered tree T  
on n nodes
YES if T is a suffix tree
NO otherwise

Output:

Input:

We can decide whether T is a $-suffix tree in O*(σ#leaves) time
….. but not clear how to decide if T is a suffix tree by
exhaustive search.

Naive approaches

?

7

The Suffix Tree
Decision Problem

An unlabeled ordered tree T  
on n nodes
YES if T is a suffix tree
NO otherwise

Output:

Input:

We can decide whether T is a $-suffix tree in O*(σ#leaves) time
….. but not clear how to decide if T is a suffix tree by
exhaustive search.

Naive approaches

?

Theorem
T is a suffix tree iff it is realized by a string of length n-1

7

T is a suffix tree iff it is realized by a string of length n-1

8

at mostT is a suffix tree iff it is realized by a string of length n-1

8

at most

1. Suppose S realizes T

acacbacbaccbacb
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

S=

T is a suffix tree iff it is realized by a string of length n-1

8

at most

1. Suppose S realizes T

acacbacbaccbacb
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

S=

T is a suffix tree iff it is realized by a string of length n-1

8

at most

1. Suppose S realizes T

2. Assume wlog that ST(S) 
 has a leaf edge of length 1

acacbacbaccbacb
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

S=

T is a suffix tree iff it is realized by a string of length n-1

8

at most

1. Suppose S realizes T

2. Assume wlog that ST(S) 
 has a leaf edge of length 1

acacbacbaccbacb
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

S=

T is a suffix tree iff it is realized by a string of length n-1

8

at most

1. Suppose S realizes T

2. Assume wlog that ST(S) 
 has a leaf edge of length 1

acacbacbaccbacb
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

S=

T is a suffix tree iff it is realized by a string of length n-1

8

at most

1. Suppose S realizes T

2. Assume wlog that ST(S) 
 has a leaf edge of length 1

3. Let v be the last leaf, and  
 p be v’s parent

acacbacbaccbacb
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

S= }
leaves

v

p

v

T is a suffix tree iff it is realized by a string of length n-1

8

at most

1. Suppose S realizes T

2. Assume wlog that ST(S) 
 has a leaf edge of length 1

3. Let v be the last leaf, and  
 p be v’s parent

4. The edge p ⇾v has length 1

acacbacbaccbacb
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

S= }
leaves

v

p

v

T is a suffix tree iff it is realized by a string of length n-1

8

at most

1. Suppose S realizes T

2. Assume wlog that ST(S) 
 has a leaf edge of length 1

3. Let v be the last leaf, and  
 p be v’s parent

4. The edge p ⇾v has length 1

5. |S| = #leaves + |str(p)|  
 ≤ #leaves + #internal-1 
 = n-1

acacbacbaccbacb
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

S= }
leaves

v

p

v

T is a suffix tree iff it is realized by a string of length n-1

8

at most

1. Suppose S realizes T

2. Assume wlog that ST(S) 
 has a leaf edge of length 1

3. Let v be the last leaf, and  
 p be v’s parent

4. The edge p ⇾v has length 1

5. |S| = #leaves + |str(p)|  
 ≤ #leaves + #internal-1 
 = n-1

acacbacbaccbacb
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

S= }
leaves

v

p

v

T is a suffix tree iff it is realized by a string of length n-1

8

Lemma: If T is realized by a string of length |S|, then it is 
also realized by strings of length |S|+1, |S|+2, etc.

1. Suppose S realizes T

2. Assume wlog that ST(S) 
 has a leaf edge of length 1

3. Let v be the last leaf, and  
 p be v’s parent

4. The edge p ⇾v has length 1

5. |S| = #leaves + |str(p)|  
 ≤ #leaves + #internal-1 
 = n-1

acacbacbaccbacb
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

S= }
leaves

v

p

v

T is a suffix tree iff it is realized by a string of length n-1

8

Lemma: If T is realized by a string of length |S|, then it is 
also realized by strings of length |S|+1, |S|+2, etc.

T is a suffix tree iff it is realized by a string of length n-1

Trivial observation: |S| ≥ #leaves = n-1

…..

9

T is a suffix tree iff it is realized by a string of length n-1

Trivial observation: |S| ≥ #leaves = n-1

…..

S = abcdef……
T can be realized by

of length |S|=n-1
9

The Suffix Tree
Decision Problem

An unlabeled ordered tree T  
on n nodes
YES if T is a
NO otherwise

Output:

Input:

10

?
suffix tree

The Suffix Tree
Decision Problem

An unlabeled ordered tree T  
on n nodes
YES if T is a
NO otherwise

Output:

Input:

10

with suffix links and first letters

a b c

a b c

a b a b

a b?

Light version

$-suffix tree

The Suffix Tree
Decision Problem

An unlabeled ordered tree T  
on n nodes
YES if T is a
NO otherwise

Output:

Input:

10

with suffix links and first letters

a b c

a b c

a b a b

a b?

Light version

Previous work
I et al. [Discrete Appl. Math. 163, 2014] gave an O(n) time algorithm for
deciding if T is a $-suffix tree.
Cazaux & Rivals [J. Discrete Algorithms, 2014] considered the problem of
deciding if T is a $-suffix tree when no first letters are given.

$-suffix tree

The Suffix Tree
Decision Problem

An unlabeled ordered tree T  
on n nodes
YES if T is a
NO otherwise

Output:

Input:

10

with suffix links and first letters

a b c

a b c

a b a b

a b?

Light version

Previous work
I et al. [Discrete Appl. Math. 163, 2014] gave an O(n) time algorithm for
deciding if T is a $-suffix tree.
Cazaux & Rivals [J. Discrete Algorithms, 2014] considered the problem of
deciding if T is a $-suffix tree when no first letters are given.

suffix tree

Our contribution: We show how to decide if T is a suffix tree in O(n) time.

11

The Suffix Tour Graph
a b c

a b c

a b a b

a b

11

The Suffix Tour Graph
a b c

a b c

a b a b

a b

11

The Suffix Tour Graph
a b c

a b c

a b a b

a b

11

The Suffix Tour Graph

11

The Suffix Tour Graph

0 1

2

3

4

5

6

7

8

S = b
0
b
1
c
2
b
3
b
4
c
5
a
6
b
7
a
8

11

The Suffix Tour Graph

0 1

2

3

4

5

6

7

8

S = b
0
b
1
c
2
b
3
b
4
c
5
a
6
b
7
a
8

Open Problems

12

An unlabeled ordered tree T  
on n nodes
YES if T is a
NO otherwise

Output:

Input:
with suffix links and first letters

a b c

a b c

a b a b

a b?
suffix tree

Open Problems

12

An unlabeled ordered tree T  
on n nodes
YES if T is a
NO otherwise

Output:

Input: ?
suffix tree

Can this problem be solved in poly(n) time?

