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What do suffix trees look like?
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The Suffix Tree 
Decision Problem

An unlabeled ordered tree T  
on n nodes
YES if T is a suffix tree 
NO otherwise

Output:

Input: ?
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We can decide whether T is a $-suffix tree in O*(σ#leaves) time
….. but not clear how to decide if T is a suffix tree by 
exhaustive search.

Naive approaches
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T is a suffix tree iff it is realized by a string of length n-1

Trivial observation: |S| ≥ #leaves = n-1

…..
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T is a suffix tree iff it is realized by a string of length n-1

Trivial observation: |S| ≥ #leaves = n-1

…..

S = abcdef…… 
T can be realized by

of length |S|=n-1
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The Suffix Tree 
Decision Problem

An unlabeled ordered tree T  
on n nodes
YES if T is a   
NO otherwise

Output:

Input:
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Light version

Previous work
I et al. [Discrete Appl. Math. 163, 2014] gave an O(n) time algorithm for 
deciding if T is a $-suffix tree. 
Cazaux & Rivals [J. Discrete Algorithms, 2014] considered the problem of 
deciding if T is a $-suffix tree when no first letters are given.

suffix tree

Our contribution:  We show how to decide if T is a suffix tree in O(n) time.
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An unlabeled ordered tree T  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YES if T is a   
NO otherwise

Output:

Input: ?
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Can this problem be solved in poly(n) time?


