Sparse Suffix Tree Construction in Small Space

Philip Bille, Inge Li Ggrtz, Hjalte Wedel Vildhg;
(Technical University of Denmark)
Johannes Fischer, (Karlsruhe Institute of Technology)
Tsvi Kopelowitz, (Weizmann Institute of Science)
Benjamin Sach (University of Warwick)

THE UNIVERSITY OF

WARWICK

he sparse suffix array (SSA)

he sparse suffix array (SSA)

1 |plainlalnials

2 lalnla\n|lals

T |blanlainla|s

3 njalnlals

4 |alnlals

5 Injals

O |al|s

he sparse suffix array (SSA)

1 |plainlalnials

2 lalnla\n|lals

T |blanla|n|la|s

3 njalnlals

4 |alnlals

5 Injals

O |al|s

he sparse suffix array (SSA)

1 |plainlalnials

2 lalnla\n|lals

T |blanlainla|s

3 njalnlals

4 |alnlals

5 Injals

O |al|s

he sparse suffix array (SSA)
n | 1 |bla|n|a
alnjaln|als 2 |lania|n
3 nialn|a
Sort the suffixes 4 |a|nja
lexicographically 5 nlals
O |al|s
7 |S

he sparse suffix array (SSA)

n | 2 |la|n|a
a|niajn|als 4 lan|a
6 |al|sSs
Sort the suffixes L |[b]a|n
lexicographically 3 mlaln
Hb |[njal|s
7 |S

he sparse suffix array (SSA)

| n | 2 |lajn|a
T | blalnla|n|als 4 |laln|a
6 |a|s
Sort the suffixes 1 [bla|n
lexicographically 3 mlaln
5 |njals
I T I 7 s

Suffix Array [2(4|6|1(3|5|7

he sparse suffix array (SSA)

| n | 2 laln|ain|als
T Iblalnlaln|als 4 lalnla|s
6 |a|s
Sort the suffixes 1 [bla|n|a|n|a|s
lexicographically 3 mlalnlals
5 |njal|s
| n | - I3

Suffix Array [2(4|6|1(3|5|7

e Can be built in O(n) time
and O(n) extra space

he sparse suffix array (SSA)

| n | 2 laln|ain|als
T Iblalnlaln|als 4 lalnla|s
6 |a|s
Sort the suffixes 1 [bla|n|a|n|a|s
lexicographically 3 mlalnlals
5 |njal|s
| n | - I3

Suffix Array [2(4|6|1(3|5|7

e Can be built in O(n) time
and O(n) extra space

e What if we only care about a few of the suffixes?

he sparse suffix array (SSA)

| n | 2 la|njalnjals
T Iblalnlaln|als 4 lalnla|s
O |al|s
1 |plainlalnials
3 njalnlals
5 Injals
I n I 7 s

Suffix Array [2(4|6|1(3|5|7

e Can be built in O(n) time
and O(n) extra space

e What if we only care about a few of the suffixes?

he sparse suffix array (SSA)

Suffix Array

| 2 lalnla|nlal|s
nials 4 |a|n|al|s
nlial|s O |al|s
nials 1 |plainlalnials
la]s] 3 [nlaln]als

5 Injals

n I 7 [s

416[1[3[5|7

e Can be built in O(n) time
and O(n) extra space

e What if we only care about a few of the suffixes?

he sparse suffix array (SSA)

Suffix Array

| 2 |lalnla|nlal|s
nials 4 |a|n|al|s
n\als 6-
nials 1 |plainlalnials
la]s] 3 [nlaln]als

5 njals

n I 7 [s

416[1[3[5|7

e Can be built in O(n) time
and O(n) extra space

e What if we only care about a few of the suffixes?

he sparse suffix array (SSA)

| n I FO()4 2 |a|nja|nals
T [blaln]aln]als] 4 4 [alnlals
Tlalnlalnlals 6 S
b nia|s 1 |bla|ln|a|n|a]|s
| la]s] 3 [nlaln]als
5 njals
I n I 7 s

Suffix Array [2(4|6|1(3|5|7

e Can be built in O(n) time
and O(n) extra space

e What if we only care about a few of the suffixes?

| | FO(b)A
T [blalnlaln]a]s]| -+
T laln]aln]als
b nials
1 als]
n I
Suffix Array [2]48 1]3]5]7

he sparse suffix array (SSA)

2 lalnlaln|ja|s
4 laln|al|s

G [als]

1 |plainlalnials
3 njalnlals

5 njals

7 |S

e Can be built in O(n) time
and O(n) extra space

e What if we only care about a few of the suffixes?

he sparse suffix array (SSA)

| n I FO()4 2 |a|nja|nals
T [blaln]aln]als] 4 4 [alnlals
Tlalnlalnlals 6 S
b nia|s 1 |bla|ln|a|n|a]|s
| la]s] 3 [nlaln]als
5 njals
I I 7 s

n
Suffix Array [2]48 1]3]5]7
Sparse Suffix Array AE e Can be built in O(n) time
—0b

and O(n) extra space

e What if we only care about a few of the suffixes?

he sparse suffix array (SSA)

| n I FO()4 2 |a|nja|nals
T [blaln]aln]als] 4 4 [alnlals
Tlalnlalnlals 6 S
b nia|s 1 |bla|ln|a|n|a]|s
| la]s] 3 [nlaln]als
5 njals
I I 7 s

n
Suffix Array [2]48 1]3]5]7
Sparse Suffix Array 9 . 5 e Can be built in O(n) time
—0b

and O(n) extra space

e What if we only care about a few of the suffixes?

T he sparse text indexing problem has been open since the 1960s
... with first, partial results from 1996 onwards

he sparse suffix array (SSA)

| n . FO(B)4 2 [an]aln
T [blaln]aln]als] 4 4 [alnla
Tlalnlalnlals 6 S
b nlals 1 |blaln
| la]s] 3 [nlaln
5 njals
I I 7 s

n
Suffix Array [2]48 1]3]5]7
Sparse Suffix Array

he sparse suffix array (SSA)

| n I FO()4 2 |a|nja|nals
T [blaln]aln]als] 4 4 [alnlals
Tlalnlalnlals 6 S
b nia|s 1 |bla|ln|a|n|a]|s
| la]s] 3 [nlaln]als
5 njals
I I 7 s

n
Suffix Array [2]48 1]3]5]7
Sparse Suffix Array

e O(nlog®b) time (Monte-Carlo)

e O((n+ b?)log®b) time with high
probability (Las-Vegas)

e both in O(b) extra space

he sparse suffix tree (SST)

| n . FO(D)A A
T [blaln]aln]als] 4 QQ?\
Tlalnlalnlals /O;K
L ;{Q x
1 a]s] CX

& >é e O(nlog”b) time (Monte-Carlo)
O o O((n+b?)log®b) time with high

probability (Las-Vegas)

e both in O(b) space

Conversion between SSA and SST is simple and takes O(nlogb) time

LCPs - a fundamental tool for string algorithms

T

n

a

a

b

a

For any (i, 7), the longest common prefix is the largest ¢ such that

Tli...i+0—1]=T[j...j+¢—1]

it's the furthest you can go before hitting a mismatch

LCPs - a fundamental tool for string algorithms

T

n

b

blclalpla|p|la

P

oy

For any (i, 7), the longest common prefix is the largest ¢ such that

Tli...i+0—1]=T[j...j+¢—1]

it's the furthest you can go before hitting a mismatch

LCPs - a fundamental tool for string algorithms
I n I

blclblalb

T

a alblclalplalpla

P P 5

For any (i, 7), the longest common prefix is the largest ¢ such that
Th...i+€—1=T|j...5+€—1]

it's the furthest you can go before hitting a mismatch

LCPs - a fundamental tool for string algorithms
| n |
T la|blc|blalplalblcla|bla|bla 4
P P
For any (i, 7), the longest common prefix is the largest ¢ such that
Tli...i+l—1]=T[j...j+€—1]

it's the furthest you can go before hitting a mismatch

LCPs - a fundamental tool for string algorithms

T

n

a

b

a

b

b

a

i

?

J

For any (i, 7), the longest common prefix is the largest ¢ such that

Tli...i+0—1]=T[j...j+¢—1]

it's the furthest you can go before hitting a mismatch

e LCP data structures are typically based

on the suffix array or suffix tree.

LCPs - a fundamental tool for string algorithms
I n I
T lalplc|blalblal|blclalblalb|a
P P
For any (i, 7), the longest common prefix is the largest ¢ such that
Tli i+ 0—1]=T[j...j+¢—1]

it's the furthest you can go before hitting a mismatch

e LCP data structures are typically based
on the suffix array or suffix tree.

e We do the opposite - we use batched LCP queries
to construct the sparse suffix array

LCPs - a fundamental tool for string algorithms
I n I
T lalplc|blalblal|blclalblalb|a
P P
For any (i, 7), the longest common prefix is the largest ¢ such that
Tli i+ 0—1]=T[j...j+¢—1]

it's the furthest you can go before hitting a mismatch

e LCP data structures are typically based
on the suffix array or suffix tree.

e We do the opposite - we use batched LCP queries
to construct the sparse suffix array

e These LCP queries will be answered using Karp-Rabin fingerprints
to ensure that the space remains small

Karp-Rabin fingerprints of strings

S ajbjajciciblalblc|b

R ol Ed k
o(S) =D j—o Slk|r® mod p
Here p = ©(n?) is a prime and 1 < r < p is a random integer

with high probability, ~ S7 = Sy iff ¢(S7) = @(.5)

Karp-Rabin fingerprints of strings

S ajbjajciciblalblc|b

5(S) =S pst S[k]r® mod p
Here p = ©(n?) is a prime and 1 < r < p is a random integer
with high probability, S7 = S5 iff ¢(S7) = ¢(.5)

Observe that ¢(S) fits in an O(logn) bit word

Karp-Rabin fingerprints of strings

Here p = ©(n?) is a prime and 1 < r < p is a random integer

with high probability, ~ S7 = Sy iff ¢(S7) = @(.5)

Observe that ¢(S) fits in an O(logn) bit word

Given ¢(510,¢]) and ¢(S[0,r]) we can compute
in O(1) time

Simple, Monte-Carlo batched LCP queries

Input : a string, T" of length n and b pairs, (i, j)
Output : for each pair (7, j) output the largest ¢ s.t.

Tl it l—1]=T[j...j+0—1]

Simple, Monte-Carlo batched LCP queries

Input : a string, T" of length n and b pairs, (i, j)
Output : for each pair (i, j) output the largest £ s.t.

Tl it l—1]=T[j...j+0—1]

o —
[I\S)
Q@

13 4 2 4
—eo—0o—0o—o

Simple, Monte-Carlo batched LCP queries

Input : a string, T" of length n and b pairs, (i, j)
Output : for each pair (i, j) output the largest £ s.t.

Tl it l—1]=T[j...j+0—1]

1 2 3 13 4 2 4
® *—eo—o—o

Simple, Monte-Carlo batched LCP queries

Input : a string, T" of length n and b pairs, (i, j)
Output : for each pair (i, j) output the largest £ s.t.

Tl it l—1]=T[j...j+0—1]

1 2 3 1 3 4 2 4
T —— s 8 = & s —e—e

Simple, Monte-Carlo batched LCP queries

Input : a string, T" of length n and b pairs, (i, j)
Output : for each pair (i, j) output the largest £ s.t.

Tl it l—1]=T[j...j+0—1]

1 2 3 1 3 4 2 4
T —— s 8 = & s —e—e

e We find the largest ¢ for each pair by binary search (in parallel)
comparisons are performed using fingerprints

Simple, Monte-Carlo batched LCP queries

Input : a string, T" of length n and b pairs, (i, j)
Output : for each pair (i, j) output the largest £ s.t.

Tl it l—1]=T[j...j+0—1]

~ Qo DN =
[)
[)

e We find the largest ¢ for each pair by binary search (in parallel)
comparisons are performed using fingerprints

Simple, Monte-Carlo batched LCP queries

Input : a string, T" of length n and b pairs, (i, j)
Output : for each pair (i, j) output the largest £ s.t.
Th...i+6—1]=T[j...5+£—1]

~ Qo DN =

e We find the largest ¢ for each pair by binary search (in parallel)
comparisons are performed using fingerprints

Simple, Monte-Carlo batched LCP queries

Input : a string, T" of length n and b pairs, (i, j)
Output : for each pair (i, j) output the largest £ s.t.
o Ti...i+0—=1=T|j...5+0—1]
prefix fingerprint

R

®
Q
®
Q

e We find the largest ¢ for each pair by binary search (in parallel)
comparisons are performed using fingerprints

Simple, Monte-Carlo batched LCP queries

Input : a string, T" of length n and b pairs, (i, j)
Output : for each pair (i, j) output the largest £ s.t.
o Ti...i+0—=1=T|j...5+0—1]
prefix fingerprint

R

®
Q
®
Q

e We find the largest ¢ for each pair by binary search (in parallel)
comparisons are performed using fingerprints

Simple, Monte-Carlo batched LCP queries

Input : a string, T" of length n and b pairs, (i, j)
Output : for each pair (i, j) output the largest £ s.t.
o Ti...i+0—=1=T|j...5+0—1]
prefix fingerprint

R

®
Q
®
Q

e We find the largest ¢ for each pair by binary search (in parallel)
comparisons are performed using fingerprints

Simple, Monte-Carlo batched LCP queries

Input : a string, T" of length n and b pairs, (i, j)
Output : for each pair (i, j) output the largest £ s.t.
o Ti...i+0—=1=T|j...5+0—1]
prefix fingerprint

R

®
Q
®
Q

e We find the largest ¢ for each pair by binary search (in parallel)
comparisons are performed using fingerprints

Simple, Monte-Carlo batched LCP queries

Input : a string, T" of length n and b pairs, (i, j)
Output : for each pair (i, j) output the largest £ s.t.
o Ti...i+0—=1=T|j...5+0—1]
prefix fingerprint

R

®
Q
®
Q

e We find the largest ¢ for each pair by binary search (in parallel)
comparisons are performed using fingerprints

Simple, Monte-Carlo batched LCP queries

Input : a string, T" of length n and b pairs, (i, j)
Output : for each pair (i, j) output the largest £ s.t.
o Ti...i+0—=1=T|j...5+0—1]
prefix fingerprint

R

e We find the largest ¢ for each pair by binary search (in parallel)
comparisons are performed using fingerprints

Simple, Monte-Carlo batched LCP queries

Input : a string, T" of length n and b pairs, (i, j)
Output : for each pair (i, j) output the largest £ s.t.
o Ti...i+0—=1=T|j...5+0—1]
prefix fingerprint

R

e We find the largest ¢ for each pair by binary search (in parallel)
comparisons are performed using fingerprints

Simple, Monte-Carlo batched LCP queries

Input : a string, T" of length n and b pairs, (i, j)
Output : for each pair (i, j) output the largest £ s.t.
o Ti...i+0—=1=T|j...5+0—1]
prefix fingerprint

R

e We find the largest ¢ for each pair by binary search (in parallel)
comparisons are performed using fingerprints

Simple, Monte-Carlo batched LCP queries

Input : a string, T" of length n and b pairs, (i, j)
Output : for each pair (i, j) output the largest £ s.t.
o Ti...i+0—=1=T|j...5+0—1]
prefix fingerprint

R

e We find the largest ¢ for each pair by binary search (in parallel)
comparisons are performed using fingerprints

Simple, Monte-Carlo batched LCP queries

Input : a string, T" of length n and b pairs, (i, j)
Output : for each pair (i, j) output the largest £ s.t.
o Ti...i+0—=1=T|j...5+0—1]
prefix fingerprint

R

e We find the largest ¢ for each pair by binary search (in parallel)
comparisons are performed using fingerprints

e In each pass we store (at most) 4b prefix fingerprints

Simple, Monte-Carlo batched LCP queries

Input : a string, T" of length n and b pairs, (i, j)
Output : for each pair (i, j) output the largest £ s.t.
o Ti...i+0—=1=T|j...5+0—1]
prefix fingerprint

R

e We find the largest ¢ for each pair by binary search (in parallel)
comparisons are performed using fingerprints

e In each pass we store (at most) 4b prefix fingerprints

this takes O(nlogb) time, O(b) space and is correct whp.

Building the sparse suffix array using batched LCPs

Building the sparse suffix array using batched LCPs

nia|s

SIS |
S
Va

SIS S| |S

SIS [S] |

QIS S]] |

J O Ot B W NN =

Building the sparse suffix array using batched LCPs

nia|s

SIS |
S
Va

SIS S| |S

SIS [S] |

QIS S]] |

J O Ot B W NN =

Building the sparse suffix array using batched LCPs

1 |plainlalnials
T |blanlainla|s 2 lalnlalnlals
3 njalnlals
The.LCP of two 4 Talnlals
suffixes gives us
their order O [nfajs
O |al|s
7 |S

Building the sparse suffix array using batched LCPs

1 |plainlalnials
T (blaln|a|n|als —» (2) [a]n]a]n]a]s
3 njalnlals
The LCP of two —» @ [a[n]als
suffixes gives us
their order O [nfajs
O |al|s
7 |S

Building the sparse suffix array using batched LCPs

1 |plainlalnials
T (blaln|a|n|als —» (2) [a]n]a]n]a]s
3 njalnlals
The LCP of two —» @ [a[n]a]s
suffixes gives us
their order O [nfajs
O |al|s
7 |S

Building the sparse suffix array using batched LCPs

1 |plainlalnials
T [plalnlalnlals — () [a[n]a [l a]s

3 njalnlals

The.LCP of two — @ a8

suffixes gives us

their order O (n]als
O |al|s
(2)<@) because [n]|<[s - I3

Building the sparse suffix array using batched LCPs

1 |plainlalnials
T [plalnlalnlals — () [a[n]a [l a]s

3 njalnlals

The.LCP of two . @ o a.

suffixes gives us

their order o [njajs
O |als
(2)<@) because [n]|<[s - I3

e We perform randomised quicksort on the b suffixes
using batched LCPs for suffix comparisons

Building the sparse suffix array using batched LCPs

1 |plainlalnials
T |blanlainla|s 2 lalnlalnlals
—» (3) [n]a]nlals
The LCP of two 4 Talnlals
suffixes gives us
their order O [nfajs
O |al|s
7 |S

e We perform randomised quicksort on the b suffixes
using batched LCPs for suffix comparisons

e Pick a random pivot and compare each other suffix to it
- This partitions the suffixes in O(nlogb) time and O(b) space

Building the sparse suffix array using batched LCPs

blaln|la|nla|s

The LCP of two
suffixes gives us

their order — @ [nle[nfa[s]
5 [nla|s
7 |S

e We perform randomised quicksort on the b suffixes
using batched LCPs for suffix comparisons

e Pick a random pivot and compare each other suffix to it
- This partitions the suffixes in O(nlogb) time and O(b) space

Building the sparse suffix array using batched LCPs

blaln|la|nla|s

The LCP of two
suffixes gives us

their order — @ [nle[nfa[s]
5 [nla|s
7 |S

e We perform randomised quicksort on the b suffixes
using batched LCPs for suffix comparisons

e Pick a random pivot and compare each other suffix to it
- This partitions the suffixes in O(nlogb) time and O(b) space
- Recurse on each partition (the batch still contains b LCPs)

Building the sparse suffix array using

1
2
T (blalnlaln|als

_ @

The LCP of two §)
suffixes givesus 7
their order 5

> @

7

batched LCPs

b

a

S

e We perform randomised quicksort on the b suffixes
using batched LCPs for suffix comparisons

e Pick a random pivot and compare each other suffix to it
- This partitions the suffixes in O(nlogb) time and O(b) space
- Recurse on each partition (the batch still contains b LCPs)

Building the sparse suffix array using batched LCPs

1 |planlalnials

T |blanlainla|s 2 [a[njajnja|s
—» (4D [a[n]a]s
The LCP of two 6 |a|S

suffixes gives us
their order

e We perform randomised quicksort on the b suffixes
using batched LCPs for suffix comparisons

e The depth of the recursion is O(logb) whp. so...
The total time is O(nlog® b) and the space is O(b)

Building the sparse suffix array using batched LCPs

1 |planlalnials

alnjaln|als
T |blanlainla|s K
—» (4D [a[n]a]s
O |al|s

e We perform randomised quicksort on the b suffixes
using batched LCPs for suffix comparisons

e The depth of the recursion is O(logb) whp. so...
The total time is O(nlog® b) and the space is O(b)

Building the sparse suffix array using batched LCPs

1 |planlalnials

aniajn|als
T |blanlainla|s £
—» (4 [a]n]aTs
O |al|s

This algorithm is Monte-Carlo
and Las-Vegas. It can be 3 [njanja|s
made Monte-Carlo only by |
aborting the quicksort early

e We perform randomised quicksort on the b suffixes
using batched LCPs for suffix comparisons

e The depth of the recursion is O(logb) whp. so...
The total time is O(nlog® b) and the space is O(b)

he sparse suffix array (SSA)

| n | 2 |lajnja|nja|s
T Iblalnlaln|als 4 lalnla|s
Tlalnlalnlals 6 S
b nlals 1 |plalnja|n|als
| la]s] 3 [nlaln]als
5 njals
7 |S

n
Suffix Array [2]4 B 1[3]5]7 e O(nlog”b) time (Monte-Carlo)

Sparse Suffix Array 2 8l 5 e O((n+ b?)log®b) time with high
—b— probability (Las-Vegas)

e both in O(b) space

Veritying the sparse suffix array

T |[bla|n
| n |

Suffix Array [2(4(6|1|3|5|7

S
S
S
w

How can we tell if this suffix array is correct?

Veritying the sparse suffix array

S
S
S
w

T |[bla|n
| n |

Suffix Array [2(4(6|1|3|5|7

How can we tell if this suffix array is correct?

Check that [2|<|4] . [4|<[|6] . |6|<|1| [1|<|3]

Veritying the sparse suffix array

S
S
S
w

T |[bla|n
| n |

Suffix Array [2(4(6|1|3|5|7

How can we tell if this suffix array is correct?

Check that [2|<|4] . [4|<[|6] . |6|<|1| [1|<|3]

Veritying the sparse suffix array

S
S
S
w

T |[bla|n
| n |

Suffix Array [2(4(6|1|3|5|7

How can we tell if this suffix array is correct?

Check that [2|<|4] . [4|<[|6] . |6|<|1| [1|<|3]

We could check [2]<|4| using an LCP query if we verified it

Veritying the sparse suffix array

S
S
S
w

T |[bla|n
| n |

Suffix Array [2(4(6|1|3|5|7

How can we tell if this suffix array is correct?

Check that [2|<|4] . [4|<[|6] . |6|<|1| [1|<|3]

We could check [2]<|4| using an LCP query if we verified it

A first example

Q

Q

A first example

Q

Q

A first example

Q

Q

A first example

Q

Q

A first example

1_
T2 O O
3
: :

A first example

Q
-__..___-_
Q

If and blue (2) match then
the right half of matches

A first example

b i
T 2 o 5 o
3 o O P O
o If and blue (2) match then
| | | the right half of green (3) matches
¥ 0
o

This is a lock-stepped cycle

A first example

b i
T 2 o 5 o
3 o O P O
o If and blue (2) match then
| | | the right half of green (3) matches
¥ 0
o

This is a lock-stepped cycle

A second example

Q

Q

A second example

@)
- @---}-
o

If ,blue (2) and
then % of Is periodic

match

A second example

| — :
T 2 o o o
3 ® 0 ——0
[If blue (2) and green (3) match

— then S of green (3) is periodic
o
0
o

This is an unlocked cycle

A second example

Q

Q

A second example

1_
Tt TR
, ‘\:Ffsets/*
o

These tricks only work when the offsets are small

he overall idea

e \We build a graph which encodes the structure of the queries

he overall idea

e \We build a graph which encodes the structure of the queries

O

he overall idea

H‘_/~ close

e \We build a graph which encodes the structure of the queries

O

he overall idea

H‘_/~ close

e \We build a graph which encodes the structure of the queries

©

he overall idea

w far

e \We build a graph which encodes the structure of the queries

©

he overall idea

w far

e \We build a graph which encodes the structure of the queries

© ©

he overall idea

w far

e \We build a graph which encodes the structure of the queries

© ©

he overall idea

e \We build a graph which encodes the structure of the queries

© ©
©

he overall idea

e \We build a graph which encodes the structure of the queries

®\®O

he overall idea

e \We build a graph which encodes the structure of the queries

O e \We can apply one of the two tricks
to any short cycle

he overall idea

e \We build a graph which encodes the structure of the queries

O e \We can apply one of the two tricks
to any short cycle (length at most 2logb + 1)

he overall idea

e \We build a graph which encodes the structure of the queries

O e \We can apply one of the two tricks
to any short cycle (length at most 2logb + 1)

e This breaks the cycle (because we delete an edge)

he overall idea

e \We build a graph which encodes the structure of the queries

O e \We can apply one of the two tricks
to any short cycle (length at most 2logb + 1)

e This breaks the cycle (because we delete an edge)

Fact If every node has degree at least three there is a short cycle

he overall idea

e \We build a graph which encodes the structure of the queries

Fact If every node has degree at least three there is a short cycle

e Finding a short cycle in the graph takes O(b) time
e This gives the additive O(b? logb) term

e All other steps take O(nlogb) time over all rounds
(and use O(b) space)

Summary

| n | 2 |lajnja|nja|s
T Iblalnlaln|als 4 lalnla|s
Tlalnlalnlals 6 S
b nlals 1 |plalnja|n|als
| la]s] 3 [nlaln]als
5 njals
7 |S

n
Suffix Array [2]4 B 1[3]5]7 e O(nlog”b) time (Monte-Carlo)

Sparse Suffix Array 2 8l 5 e O((n+ b?)log®b) time with high
—b— probability (Las-Vegas)

e both in O(b) space

	Title

