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T he sparse text indexing problem has been open since the 1960s
... with first, partial results from 1996 onwards
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Conversion between SSA and SST is simple and takes O(nlogb) time
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Tli i+ 0—1]=T[j...j+¢—1]
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e LCP data structures are typically based
on the suffix array or suffix tree.

e We do the opposite - we use batched LCP queries
to construct the sparse suffix array

e These LCP queries will be answered using Karp-Rabin fingerprints
to ensure that the space remains small
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Karp-Rabin fingerprints of strings

Here p = ©(n?) is a prime and 1 < r < p is a random integer

with high probability, ~ S7 = Sy iff ¢(S7) = @(.5)

Observe that ¢(S) fits in an O(logn) bit word

Given ¢(510,¢]) and ¢(S[0,r]) we can compute
in O(1) time
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Input : a string, T" of length n and b pairs, (i, j)
Output : for each pair (i, j) output the largest £ s.t.
o Ti...i+0—=1=T|j...5+0—1]
prefix fingerprint
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e We find the largest ¢ for each pair by binary search (in parallel)
comparisons are performed using fingerprints

e In each pass we store (at most) 4b prefix fingerprints

this takes O(nlogb) time, O(b) space and is correct whp.
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These tricks only work when the offsets are small
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he overall idea

e \We build a graph which encodes the structure of the queries

Fact If every node has degree at least three there is a short cycle

e Finding a short cycle in the graph takes O(b) time
e This gives the additive O(b? logb) term

e All other steps take O(nlogb) time over all rounds
(and use O(b) space)



Summary

| n | 2 |lajnja|nja|s
T Iblalnlaln|als 4 lalnla|s
Tlalnlalnlals 6 S
b nlals 1 |plalnja|n|als
| la]s] 3 [nlaln]als
5 njals
7 |S

n
Suffix Array [2]4 B 1[3]5]7 e O(nlog”b) time (Monte-Carlo)

Sparse Suffix Array 2 8l 5 e O((n+ b?)log®b) time with high
—b— probability (Las-Vegas)

e both in O(b) space
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