
Sparse Text Indexing in Small Space∗

Philip Bille1,†

phbi@dtu.dk

Johannes Fischer2

johannes.fischer@cs.tu-dortmund.de

Inge Li Gørtz1,†

inge@dtu.dk

Tsvi Kopelowitz3

kopelot@gmail.com

Benjamin Sach4

ben@cs.bris.ac.uk

Hjalte Wedel Vildhøj1

hwv@hwv.dk

Abstract

In this work we present efficient algorithms for constructing sparse suffix trees, sparse
suffix arrays and sparse positions heaps for b arbitrary positions of a text T of length
n while using only O(b) words of space during the construction.

Attempts at breaking the naive bound of Ω(nb) time for constructing sparse suffix
trees in O(b) space can be traced back to the origins of string indexing in 1968. First
results were only obtained in 1996, but only for the case where the b suffixes were evenly
spaced in T . In this paper there is no constraint on the locations of the suffixes.

Our main contribution is to show that the sparse suffix tree (and array) can be
constructed in O(n log2 b) time. To achieve this we develop a technique, that allows
to efficiently answer b longest common prefix queries on suffixes of T , using only O(b)
space. We expect that this technique will prove useful in many other applications in
which space usage is a concern. Our first solution is Monte-Carlo and outputs the
correct tree with high probability. We then give a Las-Vegas algorithm which also uses
O(b) space and runs in the same time bounds with high probability when b = O(

√
n).

Furthermore, additional tradeoffs between the space usage and the construction time
for the Monte-Carlo algorithm are given.

Finally, we show that at the expense of slower pattern queries, it is possible to
construct sparse position heaps in O(n + b log b) time and O(b) space.

1Technical University of Denmark, DTU Compute
2TU Dortmund, Department of Computer Science
3Weizmann Institute of Science, Faculty of Mathematics and Computer Science
4University of Bristol, Department of Computer Science
†Supported partly by a grant from the Danish Council for Independent Research | Natural Sciences.

Supported by the Danish Research Council (DFF4005-00267, DFF 1323-00178) and the Advanced Technology
Foundation.
∗Preliminary version appeared in Proceedings of the 40th International Colloquium on Automata, Lan-

guages and Programming

1

1 Introduction
In the sparse text indexing problem we are given a string T = t1 . . . tn of length n, and a list
of b interesting positions in T . The goal is to construct an index for only those b positions,
while using only O(b) words of space during the construction process (in addition to storing
the text T). Here, by index we mean a data structure allowing for the quick location of all
occurrences of patterns starting at interesting positions only. A natural application comes
from computational biology, where the string would be a sequence of nucleotides or amino
acids, and additional biological knowledge rules out many positions where patterns could
potentially start. Another application is indexing far eastern languages, where one might be
interested in indexing only those positions where words start, but natural word boundaries
do not exist.

Examples of suitable O(b) space indexes include suffix trees [23], suffix arrays [19] and
positions heaps [8] built on only those suffixes starting at interesting positions. Of course, one
can always first compute a full-text suffix tree or array in linear time, and then postprocess
it to include the interesting positions only. The problem of this approach is that it needs
O(n) words of intermediate working space, which may be much more than the O(b) words
needed for the final result, and also much more than the space needed for storing T itself.
In situations where the RAM is large enough for the string itself, but not for an index on
all positions, a more space efficient solution is desirable. Another situation is where the text
is held in read-only memory and only a small amount of read-write memory is available.
Such situations often arise in embedded systems or in networks, where the text may be held
remotely.

A “straightforward” space-saving solution would be to sort the interesting suffixes by an
arbitrary string sorter, for example, by inserting them one after the other into a compacted
trie. However, such an approach is doomed to take Ω(nb + n log n) time [5], since it takes
no advantage of the fact that the strings are suffixes of one large text, so it cannot be faster
than a general string sorter.

Breaking these naive bounds has been a problem that can be traced back to—according
to Kärkkäinen and Ukkonen [14]—the origins of string indexing in 1968 [20]. First results
were only obtained in 1996, where Andersson et al. [2, 3] and Kärkkäinen and Ukkonen [14]
considered restricted variants of the problem: the first [2, 3] assumed that the interesting
positions coincide with natural word boundaries of the text, and the authors achieved expected
linear running time using O(b) space. The expectancy was later removed [9, 13], and the
result was recently generalised to variable length codes such as Huffman code [22]. The
second restricted case [14] assumed that the text of interesting positions is evenly spaced ;
i.e., every kth position in the text. They achieved linear running time and optimal O(b)
space. It should be mentioned that the data structure by Kärkkäinen and Ukkonen [14]
was not necessarily meant for finding only pattern occurrences starting at the evenly spaced
indexed positions, as a large portion of the paper is devoted to recovering all occurrences
from the indexed ones. Their technique has recently been refined by Kolpakov et al. [18].
Another restricted case admitting an O(b) space solution is if the interesting positions have
the same period ρ (i.e., if position i is interesting then so is position i+ ρ). In this case the

2

sparse suffix array can be constructed in O(bρ+ b log b) time. This was shown by Burkhardt
and Kärkkäinen [6], who used it to sort difference cover samples leading to a clever technique
for constructing the full suffix array in sublinear space. Interestingly, their technique also
implies a time-space tradeoff for sorting b arbitrary suffixes in O(v + n/

√
v) space and

O(
√
vn+ (n/

√
v) log(n/

√
v) + vb+ b log b) time for any v ∈ [2, n].

1.1 Our Results

We present the first improvements over the naive O(nb) time algorithm for general sparse
suffix trees, by showing how to construct a sparse suffix tree in O(n log2 b) time, using only
O(b) words of space. To achieve this, we develop a novel technique for performing efficient
batched longest common prefix (LCP) queries, using little space. In particular, in Section 3,
we show that a batch of b LCP queries can be answered using only O(b) words of space,
in O(n log b) time. This technique may be of independent interest, and we expect it to be
helpful in other applications in which space usage is a factor. Both algorithms are Monte-
Carlo and output correct answers with high probability, i.e., at least 1−1/nc for any constant
c.

In Section 5 we give a Las-Vegas version of our sparse suffix tree algorithm. This is
achieved by developing a deterministic verifier for the answers to a batch of b longest common
prefix queries in O(n log2 b+b2 log b) time, using O(b) space. We show that this verifier can be
used to obtain the sparse suffix tree with certainty within the same time and space bounds.
For example for b = O(

√
n) we can construct the sparse suffix tree correctly in O(n log2 b)

time with high probability using O(b) space in the worst case. This follows because, for
verification, a single batch of b LCP queries suffices to check the sparse suffix tree. The
verifier we develop encodes the relevant structure of the text in a graph with O(b) edges.
We then exploit novel properties of this graph to verify the answers to the LCP queries
efficiently.

In Section 6, we show some tradeoffs of construction time and space usage of our Monte-
Carlo algorithm, which are based on time-space tradeoffs of the batched LCP queries. In par-
ticular we show that usingO(bα) space the construction time is reduced toO

(
n log2 b

logα
+ αb log2 b

logα

)
.

So, for example, the cost for constructing the sparse suffix tree can be reduced to O(n log b)
time, using O(b1+ε) words of space where ε > 0 is any constant.

Finally, in Section 7 we show that an entirely different data structure, the position heap
of Ehrenfeucht et al. [8], yields a completely different tradeoff for indexing a sparse set of
positions. Position heaps are in a sense “easier” to compute than suffix trees or suffix arrays,
since it is not necessary to sort the entire suffixes. The price is that, in their plain form,
pattern matching is slower than with suffix trees, namely O(m2) for a pattern of length
m. Using this approach, we show how to index b positions from a text of length n using
O(n+ b log b) time and O(b) space, such that subsequent pattern matching queries (finding
the k occurrences starting at one of the b positions) can be answered in O(m2 + k) time,
for patterns of length m. Again, this algorithm is Monte-Carlo and outputs correct answers
with high probability.

3

2 Preliminaries
For a string T = t1 · · · tn of length n, denote by Ti = ti · · · tn the ith suffix of T . The LCP
of two suffixes Ti and Tj is denoted by LCP (Ti, Tj), but we will slightly abuse notation and
write LCP (i, j) = LCP (Ti, Tj). We denote by Ti,j the substring ti · · · tj. We say that Ti,j
has period ρ > 0 iff Ti+ρ,j = Ti,j−ρ. Note that ρ is a period of Ti,j and not necessarily the
unique minimal period of Ti,j, commonly referred to as the period. Logarithms are given in
base two.

We assume the reader is familiar with both the suffix tree data structure [23] as well as
suffix and LCP arrays [19].

Fingerprinting We make use of the fingerprinting techniques of Karp and Rabin [16]. Our
algorithms are in the word-RAM model with word size Θ(log n) and we assume that each
character in T fits in a constant number of words. Hence each character can be interpreted
as a positive integer, no larger than nO(1). Let p be a prime between nc and 2nc (where c > 0
is a constant picked below) and choose r ∈ Zp uniformly at random. A fingerprint for a
substring Ti,j, denoted by FP[i, j], is the number

∑j
k=i r

j−k ·tk mod p. Two equal substrings
will always have the same fingerprint, however the converse is not true. Fortunately, as each
character fits in O(1) words, the probability of any two different substrings having the same
fingerprint is at most by n−Ω(1) [16]. By making a suitable choice of c and applying the union
bound we can ensure that with probability at least 1−n−Ω(1), all fingerprints of substring of
T are collision free. I.e. for every pair of substrings Ti1,j1 and Ti2,j2 we have that Ti1,j1 = Ti2,j2
iff FP[i1, j1] = FP[i2, j2]. The exponent in the probability can be amplified by increasing the
value of c. As c is a constant, any fingerprint fits into a constant number of words.

We utilize two important properties of fingerprints. The first is that FP[i, j + 1] can
be computed from FP[i, j] in constant time. This is done by the formula FP[i, j + 1] =
FP[i, j] · r + tj+1 mod p. The second is that the fingerprint of Tk,j can be computed in
O(1) time from the fingerprint of Ti,j and Ti,k, for i ≤ k ≤ j. This is done by the formula
FP[k, j] = FP[i, j] − FP[i, k] · rj−k mod p. Notice however that in order to perform this
computation, we must have stored rj−k mod p as computing it on the fly may be costly.

3 Batched LCP Queries

3.1 The Algorithm

Given a string T of length n and a list of q pairs of indices P , we wish to compute LCP (i, j)
for all (i, j) ∈ P . To do this we perform log q rounds of computation, where at the kth

round the input is a set of q pairs denoted by Pk, where we are guaranteed that for any
(i, j) ∈ Pk, LCP (i, j) ≤ 2logn−(k−1). The goal of the kth iteration is to decide for any
(i, j) ∈ Pk whether LCP (i, j) ≤ 2logn−k or not. In addition, the kth round will prepare Pk+1,
which is the input for the (k + 1)th round. To begin the execution of the procedure we set
P0 = P , as we are always guaranteed that for any (i, j) ∈ P , LCP (i, j) ≤ n = 2logn. We

4

will first provide a description of what happens during each of the log q rounds, and after we
will explain how the algorithm uses Plog q to derive LCP (i, j) for all (i, j) ∈ P .

A Single Round The kth round, for 1 ≤ k ≤ log q, is executed as follows. We begin
by constructing the set L =

⋃
(i,j)∈Pk{i − 1, j − 1, i + 2logn−k, j + 2logn−k} of size 4q, and

construct a perfect hash table for the values in L, using a 2-wise independent hash function
into a world of size qc for some constant c (which with high probability guarantees that there
are no collisions). Notice if two elements in L have the same value, then we store them in a
list at their hashed value. In addition, for every value in L we store which index created it,
so for example, for i− 1 and i+ 2logn−k we remember that they were created from i.

Next, we scan T from t1 to tn. When we reach t` we compute FP[1, `] in constant time
from FP[1, `− 1]. In addition, if ` ∈ L then we store FP[1, `] together with ` in the hash
table. Once the scan of T is completed, for every (i, j) ∈ Pk we compute FP[i, i+ 2logn−k] in
constant time from FP[1, i− 1] and FP[1, i+ 2logn−k], which we have stored. Similarly we
compute FP[j, j + 2logn−k]. Notice that to do this we need to compute r2logn−k mod p = r

n

2k

in O(log n − k) time, which can be easily afforded within our bounds, as one computation
suffices for all pairs.

If FP[i, i+ 2logn−k] 6= FP[j, j + 2logn−k] then LCP (i, j) < 2logn−k, and so we add (i, j) to
Pk+1. Otherwise, with high probability LCP (i, j) ≥ 2logn−k and so we add (i + 2logn+k, j +
2logn+k) to Pk+1. Notice there is a natural bijection between pairs in Pk−1 and pairs in P
following from the method of constructing the pairs for the next round. For each pair in
Pk+1 we will remember which pair in P originated it, which can be easily transferred when
Pk+1 is constructed from Pk.

LCP on Small Strings After the log q rounds have taken place, we know that for every
(i, j) ∈ Plog q, LCP (i, j) ≤ 2logn−log q = n

q
. For each such pair, we spend O(n

q
) time in order to

exactly compute LCP (i, j). Notice that this is performed for q pairs, so the total cost is O(n)
for this last phase. We then construct Pfinal = {(i+LCP (i, j), j+LCP (i, j)) : (i, j) ∈ Plog q}.
For each (i, j) ∈ Pfinal denote by (i0, j0) ∈ P the pair which originated (i, j). We claim that
for any (i, j) ∈ Pfinal, LCP (i0, j0) = i− i0.

3.2 Runtime and Correctness

Each round takes O(n+ q) time, and the number of rounds is O(log q) for a total of O((n+
q) log q) time for all rounds. The work executed for computing Pfinal is an additional O(n).

The following lemma on LCPs, which follows directly from the definition, will be helpful
in proving the correctness of the batched LCP query.

Lemma 1. For any 1 ≤ i, j ≤ n, for any 0 ≤ m ≤ LCP (i, j), it holds that LCP (i+m, j +
m) +m = LCP (i, j).

We now proceed on to prove that for any (i, j) ∈ Pfinal, LCP (i0, j0) = i − i0. Lemma 2
shows that the algorithm behaves as expected during the log q rounds, and Lemma 3 proves
that the work done in the final round suffices for computing the LCPs.

5

Lemma 2. At round k, for any (ik, jk) ∈ Pk, ik − i0 ≤ LCP (i0, j0) ≤ ik − i0 + 2logn−k,
assuming the fingerprints do not give a false positive.

Proof. The proof is by induction on k. For the base, k = 0 and so P0 = P meaning that
ik = i0. Therefore, ik − i0 = 0 ≤ LCP (i0, j0) ≤ 2logn = n, which is always true. For the
inductive step, we assume correctness for k−1 and we prove for k as follows. By the induction
hypothesis, for any (ik−1, jk−1) ∈ Pk−1, i− i0 ≤ LCP (i0, j0) ≤ i− i0 + 2logn−k+1. Let (ik, jk)
be the pair in Pk corresponding to (ik−1, jk−1) in Pk−1. If ik = ik−1 then LCP (ik−1, jk−1) <
2logn−k. Therefore,

ik − i0 = ik−1 − i0 ≤ LCP (i0, j0)

≤ ik−1 − i0 + LCP (ik−1, jk−1) ≤ ik − i0 + 2logn−k.

If ik = ik−1 +2logn−k then FP[i, i+ 2logn−k] = FP[j, j + 2logn−k], and because we assume that
the fingerprints do not produce false positives, LCP (ik−1, jk−1) ≥ 2logn−k. Therefore,

ik − i0 = ik−1 + 2logn−k − i0 ≤ ik−1 − i0 + LCP (ik−1, jk−1)

≤ LCP (i0, j0) ≤ ik−1 − i0 + 2logn−k+1

≤ ik − i0 + 2logn−k,

where the third inequality holds from Lemma 1, and the fourth inequality holds as LCP (i0, j0) =
ik−1 − i0 +LCP (ik−1, jk−1) (which is the third inequality), and LCP (ik−1, jk−1) ≤ 2logn−k+1

by the induction hypothesis.

Lemma 3. For any (i, j) ∈ Pfinal, LCP (i0, j0) = i− i0(= j − j0).

Proof. Using Lemma 2 with k = log q we have that for any (ilog q, jlog q) ∈ Plog q, ilog q − i0 ≤
LCP (i0, j0) ≤ ilog q − i0 + 2logn−log q = ilog q − i0 + n

q
. Because LCP (ilog q, jlog q) ≤ 2logn−log q

it must be that LCP (i0, j0) = ilog q − i0 + LCP (ilog q, jlog q). Notice that ifinal = ilog q +
LCP (ilog q, jlog q). Therefore, LCP (i0, j0) = ifinal − i0 as required.

Notice that the space used in each round is the set of pairs and the hash table for L,
both of which require only O(q) words of space. Thus, we have obtained the following. We
discuss several other time/space tradeoffs in Section 6.

Theorem 1. There exists a randomized Monte-Carlo algorithm that with high probability
correctly answers a batch of q LCP queries on suffixes from a string of length n. The algo-
rithm uses O((n+ q) log q) time and O(q) space in the worst case.

4 Constructing the Sparse Suffix Tree
We now describe a Monte-Carlo algorithm for constructing the sparse suffix tree on any
b suffixes of T in O(n log2 b) time and O(b) space. The main idea is to use batched LCP
queries in order to sort the b suffixes, as once the LCP of two suffixes is known, deciding

6

which is lexicographically smaller than the other takes constant time by examining the first
two characters that differ in said suffixes.

To arrive at the claimed complexity bounds, we will group the LCP queries into O(log b)
batches each containing q = O(b) queries on pairs of suffixes. One way to do this is to simulate
a sorting network on the b suffixes of depth log b [1]. Unfortunately, such known networks
have very large constants hidden in them, and are generally considered impractical [21].
There are some practical networks with depth log2 b such as [4], however, we wish to do
better.

Consequently, we choose to simulate the quick-sort algorithm by each time picking a
random suffix called the pivot, and lexicographically comparing all of the other b−1 suffixes
to the pivot. Once a partition is made to the set of suffixes which are lexicographically
smaller than the pivot, and the set of suffixes which are lexicographically larger than the
pivot, we recursively sort each set in the partition with the following modification. Each
level of the recursion tree is performed concurrently using one single batch of q = O(b) LCP
queries for the entire level. Thus, by Theorem 1 a level can be computed in O(n log b) time
and O(b) space. Furthermore, with high probability, the number of levels in the randomized
quicksort is O(log b), so the total amount of time spent is O(n log2 b) with high probability.
The time bound can immediately be made worst-case by aborting if the number of levels
becomes too large, since the algorithm is still guaranteed to return the correct answer with
high probability.

Notice that once the suffixes have been sorted, then we have in fact computed the sparse
suffix array for the b suffixes. Moreover, the corresponding sparse LCP array can be obtained
as a by-product or computed subsequently by a answering a single batch of q = O(b) LCP
queries in O(n log b) time. Hence we have obtained the following.

Theorem 2. There exists a randomized Monte-Carlo algorithm that with high probability
correctly constructs the sparse suffix array and the sparse LCP array for any b suffixes from
a string of length n. The algorithm uses O(n log2 b) time and O(b) space in the worst case.

Having obtained the sparse suffix and LCP arrays, the sparse suffix tree can be con-
structed deterministically in O(b) time and space using well-known techniques, e.g. by
simulating a bottom-up traversal of the tree [17].

Corollary 1. There exists a randomized Monte-Carlo algorithm that with high probability
correctly constructs the sparse suffix tree on b suffixes from a string of length n. The algorithm
uses O(n log2 b) time and O(b) space in the worst case.

5 Verifying the Sparse Suffix and LCP Arrays
In this section we give a deterministic algorithm which verifies the correctness of the sparse
suffix and LCP arrays constructed in Theorem 2. This immediately gives a Las-Vegas algo-
rithm for constructing either the sparse suffix array or sparse suffix tree with certainty.

In fact our main contribution here is an efficient algorithm which solves the general
problem of verifying that b arbitrary pairs of substrings of T match. As we will see below,

7

this suffices to verify the correctness of the sparse suffix and LCP arrays. A naive approach to
verifying that b arbitrary substring pairs of T match would be to verify each pair separately
in Ω(nb) time. However, by exploiting the way the pairs overlap in T , we show how to do
much better. In the statement of our result in Lemma 4, each substring (wi or w′i) in the
input is provided by giving the indices of its leftmost and rightmost character (i.e. in O(1)
words).

Lemma 4. Given (the locations of) b pairs of substrings (w1, w
′
1), . . . , (wb, w

′
b) of a string

T of length n, there is a deterministic algorithm that decides whether all pairs match, i.e.
whether wi = w′i for all i = 1, . . . , b, in time O(n log2 b+ b2 log b) and O(b) working space.

Before we prove Lemma 4, we first discuss how it can be used to verify a batch of LCP
queries and then in turn to verify the sparse suffix array. Consider some LCP query (i, j)
for which the answer LCP (i, j) has been computed (perhaps incorrectly). By definition, it
suffices to check that Ti,i+LCP (i,j)−1 = Tj,j+LCP (i,j)−1 and ti+LCP (i,j) 6= tj+LCP (i,j). The latter
check takes O(1) time per query while the former is exactly the problem solved in Lemma 4.
Lemma 5 then follows immediately from Lemma 4 and the Monte-Carlo algorithm for batched
LCP queries we gave in Theorem 1.

Lemma 5. There exists a randomized Las-Vegas algorithm that correctly answers a batch of b
LCP queries on suffixes from a string of length n. The algorithm runs in O(n log2 b+b2 log b)
time with high probability and uses O(b) space in the worst case.

Finally observe that as lexicographical ordering is transitive it suffices to verify the correct
ordering of each pair of indices which are adjacent in the sparse suffix array. The correct
ordering of any two suffixes Ti and Tj can be decided deterministically in constant time by
comparing ti+LCP (i,j) to tj+LCP (i,j). Therefore the problem reduces to checking the LCP of
each pair of indices which are adjacent in the sparse suffix array and the result then follows.

Theorem 3. There exists a randomized Las-Vegas algorithm that correctly constructs the
sparse suffix array and the sparse LCP array for any b suffixes from a string of length n. The
algorithm uses O(n log2 b + b2 log b) time with high probability and O(b) space in the worst
case.

5.1 Proof of Lemma 4

As before, our algorithm performs O(log b) rounds of computation. The rounds occur in
decreasing order. In round k the input is a set of (at most) b pairs of substrings to be
verified. Every substring considered in round k has length mk = 2k. Therefore they can
be described as a pair of indices {x, y}, corresponding to a pair of substrings Tx,x+mk−1 and
Ty,y+mk−1 where mk = 2k. We say that {x, y} matches iff Tx,x+mk−1 = Ty,y+mk−1. The initial,
largest value of k is the largest integer such that mk < n. We perform O(log b) rounds,
halting when n/b < mk < 2n/b after which point we can verify all pairs by scanning T in
O(mk · b) = O(n) time.

8

Of course in Lemma 4, substring pairs can have arbitrary lengths. This is resolved by
inserting two overlapping pairs into the appropriate round. I.e. if the original input contains
a pair of substrings (Tx,x+d−1, Ty,y+d−1) we insert two index pairs into round k = blog dc:

{x, y} and {x+ d− 1−mk, y + d− 1−mk} .

In round k we will replace each pair {x, y} with a new pair {x′, y′} to be inserted into
round (k − 1) such that Tx,x+mk−1 = Ty,y+mk−1 iff Tx′,x′+mk−1−1 = Ty′,y′+mk−1−1. Each new
pair will in fact always correspond to substrings of the old pair. In some cases we may choose
to directly verify some {x, y}, in which case no new pair is inserted into the next round.

We now focus on an arbitrary round k and for brevity we let m = mk when k is clear from
the context.

The Suffix Implication Graph We start each round by building a graph (V,E) which
encodes the overlap structure of the pairs we are to verify. We build the vertex set V greedily.
Consider each text index 1 ≤ x ≤ n in ascending order. We include index x as a vertex
in V iff it occurs in some pair {x, y} (or {y, x}) and the last index included in V was at
least m/(9 · log b) characters ago. Observe that |V | ≤ 9 · (n/m) log b and also |V | ≤ 2b. It
is simple to build the suffix implication graph in O(b log b) time by traversing the pairs in
sorted order. As we will show next, |E| ≤ b, so we can store the graph in O(b) space.

See Figure 1 for an example of the suffix implication graph. Each pair of indices {x, y}
corresponds to an edge between vertices v(x) and v(y). Here v(x) is the unique vertex such
that v(x) ≤ x < v(x) + m/(9 · log b). The vertex v(y) is defined analogously. Where it
is clear from context, we will abuse notation by using {x, y} to refer to the match and the
corresponding edge in the graph. Note that the graph can have multiple edges and self-loops,
which we are going to treat as cycles of length 2 and 1, respectively.

We now discuss the structure of the graph constructed and show how it can be exploited
to efficiently verify the pairs in a round. The following simple lemma will be essential to our
algorithm and underpins the main arguments below. The result is folklore but we include a
proof for completeness.

Lemma 6. Let (V,E) be an undirected graph in which every vertex has degree at least three.
There is a (simple) cycle in (V,E) of length at most 2 log |V |+ 1.

Proof. Let v be any vertex in V . First observe that as each vertex has degree at least three,
there must be a cycle (keep walking until you get back to somewhere you’ve been before).
Perform a breadth first search from v. Every time you increase the distance from v by one,
either the number of different vertices seen doubles or a cycle is found. This is because each
vertex has degree at least three (but you arrived via one of the edges). Two of these edges
must lead to new, undiscovered vertices (or a cycle has been found). Therefore when a cycle
is discovered the length of the path from v is at most log |V |. Note that this cycle may not
contain v. However as the distance from v to any vertex found is at most log |V ′|, the cycle
length is at most 2 log |V |+ 1. As v was arbitrary, the lemma follows.

9

T =

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

v1

m
9 log b

v2

m
9 log b

v3

m
9 log b

{p1, p8}
{p2, p4}
{p3, p9}
{p5, p10}
{p6, p7}P

ai
rs

to
ve

ri
fy

m

p1, p2, p3v1

p4, p5, p6, p7

v2

p8, p9, p10v3

{p2, p4}

{p5, p10}

{p1, p8} {p3, p9} {p6, p7}

Figure 1: The suffix implication graph for a string T and 5 pairs of substrings to verify. In
the case illustrated the vertex set constructed by the greedy algorithm has three vertices:
v1, v2, v3. Each edge in the suffix implication graph corresponds to a pair to be verified.

10

The graph we have constructed may have vertices with degree less than three, preventing
us from applying Lemma 6. For each vertex v(x) with degree less than three, we verify
every index pair {x, y} (which corresponds to a unique edge). By directly scanning the
corresponding text portions this takes O(|V |m) time. We can then safely remove all such
vertices and the corresponding edges. This may introduce new low degree vertices which are
then verified iteratively in the same manner. As |V | ≤ 9 · (n/m) log b, this takes a total of
O(n log b) time. In the remainder we continue under the assumption that every vertex has
degree at least three.

Algorithm Summary Consider the graph (V,E). As every vertex has degree at least
three, there is a short cycle of length at most 2 log |V | + 1 ≤ 2 log b + 1 by Lemma 6. We
begin by finding such a cycle in O(b) time by performing a BFS of (V,E) starting at any
vertex (this follows immediately from the proof of Lemma 6). Having located such a cycle,
we will distinguish two cases. The first case is when the cycle is lock-stepped (defined below)
and the other when it is unlocked. In both cases we will show below that we can exploit the
structure of the text to safely delete an edge from the cycle, breaking the cycle. The index
pair corresponding to the deleted edge will be replaced by a new index pair to be inserted
into the next round where m← mk−1 = mk/2. Observe that both cases reduce the number
of edges in the graph by one. Whenever we delete an edge we may reduce the degree of
some vertex to below three. In this case we immediately directly process this vertex in O(m)
time as discussed above (iterating if necessary). As we do this at most once per vertex (and
O(|V |m) = O(n log b)), this does not increase the overall complexity. We then continue by
finding and processing the next short cycle. The algorithm therefore searches for a cycle
at most |E| ≤ b times, contributing an O(b2) time additive term. In the remainder we will
explain the two cycle cases in more detail and prove that the time complexity for round k is
upper bounded by O(n log b) (excluding finding the cycles). Recall we only perform O(log b)
rounds (after which m = O(n/b) and we verify all pairs naively), so the final time complexity
is O(n log2 b+ b2 log b) and the space is O(b).

Cycles We now define a lock-stepped cycle. Let the pairs {xi, yi} for i ∈ {1, . . . , `} define
a cycle in the graph of length at most 2 log b + 1, i.e. v(yi) = v(xi+1) for 1 ≤ i < ` and
v(y`) = v(x1). Let di = xi − yi−1 for 1 < i < `, d1 = x1 − y` and let ρ =

∑`
i=1 di. We say

that the cycle is lock-stepped iff ρ = 0 (and unlocked otherwise). Intuitively, lock-stepped
cycles are ones where all the underlying pairs are in sync. See Figure 2 for an example of
a lock-stepped and an unlocked cycle in the suffix implication graph of Figure 1. We will
discuss these examples in more detail below.

Observe that the definition given is well-defined in the event of multi-edges (` = 2) and
self-loops (` = 1). For example in Figure 1, there is multi-edge cycle formed by {x1, y1} =
{p1, p8} and {x2, y2} = {p9, p3} where v(p8) = v(p9) = v3 and v(p3) = v(p1) = v1. There is
also a self-loop cycle formed by {x1, y1} = {p6, p7} where v(p6) = v(p7) = v2 which conforms
with the definition as ` = 1. Note that self-loops are always unlocked since ρ = d1 = x1−y1 6=
0 (we can assume that x1 6= y1, otherwise a match is trivial).

11

ρ = 0

S
p10

= = = = = = =

|d1|

p8

? ? ? ? ? ? ? ? ? ? ? ? ?
p1

= = = = = = = = =

p2

? ? ? ? ? ? ? ? ? ? ? ? ?
p4

= = = = = = = = = = =

p5

(a) A lock-stepped cycle.

ρ

S
p3

= = = = = = = = =

|d1|

p2

? ? ? ? ? ? ? ? ? ? ? ? ?
p4

= = = = = = = = = = =

p5

? ? ? ? ? ? ? ? ? ? ? ? ?
p10

= = = = = = = = = = =

p9

(b) An unlocked cycle.

Figure 2: Illustrating two cases of cycles in the suffix implication graph shown in Figure 1.
The lock-stepped cycle consists of the pairs {p5, p10}, {p8, p1} and {p2, p4}. The unlocked
cycle consists of the pairs {p9, p3}, {p2, p4} and {p5, p10}. The symbol = is used between
the characters that are known to be equal because the strings overlap in T , and ? is used
between characters that do not necessarily match.

As discussed above our algorithm proceeds by repeatedly finding a short cycle in the
suffix implication graph. Let {xi, yi} for i = 1 . . . ` define a cycle uncovered in (V,E) by the
algorithm. There are now two cases, either the cycle is lock-stepped or, by definition, it is
unlocked. We now discuss the key properties we use in each case to process this cycle. We
begin with the simpler, lock-stepped cycle case.

5.1.1 Lock-stepped Cycles

For a lock-stepped cycle the key property we use is given in Lemma 7 below. In the lemma
we prove that in any lock-stepped cycle there is a particular pair {xj, yj} such that if every
other pair {xi, yi} matches (i.e. when i 6= j) then the left half of {xj, yj} matches. Therefore
to determine whether {xj, yj} matches we need only check whether the right half of {xj, yj}
matches.

Before formally proving Lemma 7 we give an overview of the proof technique with refer-
ence to the example in Figure 2(a). The Figure 2(a) gives an illustration of the structure of
the text underlying the cycle given by the nodes v1, v2 and v3 in the suffix implication graph
in Figure 1. More formally, it illustrates the cycle {x1, y1} = {p5, p10}, {x2, y2} = {p8, p1} and
{x3, y3} = {p2, p4} where v(p10) = v(p8) = v3, v(p1) = v(p2) = v1 and v(p4) = v(p5) = v2.
Notice that in Figure 1 the substrings Tp8,p8+m−1 and Tp10,p10+m−1 overlap in T and so over-
lap by the same amount in Figure 2(a). Further because they overlap in T we know that
a portion of them is equal - this is indicated with || symbols (drawn as a rotated =). Next
consider the substrings Tp8,p8+m−1 and Tp1,p1+m−1 which correspond to a pair {p8, p1} which
should be verified for equality. To illustrate this we draw them with one directly above the
other with ? symbols. The diagram then proceeds in this fashion for the other edges. Notice
that because ρ = 0 it follows that the top substring Tp10,p10+m−1 is aligned directly above the
bottom substring Tp5,p5+m−1 and also forms a pair {p5, p10} to be verified.

12

Consider the string S (the grey box in the diagram), which is a prefix of Tp10,p10+m−1. As
Tp10,p10+m−1 and Tp8,p8+m−1 overlap in T , the string S also occurs as a suffix of Tp8,p8+m−1. Now
assume (as in the Lemma below) that both {p8, p1} and {p2, p4} match. This is equivalent
to saying that all the ? symbols are equal. We therefore have (as illustrated) that S occurs
as a substring of Tp1,p1+m−1 as well. Continuing this argument we conclude that S is a prefix
of Tp5,p5+m−1. As we demonstrate in the proof, |S| > m/2 and thus we have, for free, that
the first half of {p5, p10} matches. Lemma 7 formalises this intuition:

Lemma 7. Let {xi, yi} for i = 1 . . . ` be the edges in a lock-stepped cycle. Further let
j = arg max

∑j
i=1 di. If {xi, yi} match for all i 6= j then {xj, yj} matches iff

Txj+m/2,xj+m−1 = Tyj+m/2,yj+m−1 .

Proof. In the following we will work with indices modulo `, i.e. x`+1 is x1. As observed
above, as the cycle is lock-stepped, it cannot be a self-loop and thus ` ≥ 2.

By assumption we have that {xi, yi} matches for all i 6= j. This means that Txi,xi+m−1 =

Tyi,yi+m−1 for all i 6= j. Let γ =
∑j

i=1 di and observe that as ρ =
∑`

i=1 di = 0, by the
maximality of j, we have that γ ≥ 0. More generally we define γ′i = γ −∑i

i′=1 di′ . We first
show that for all i ∈ {1, 2, . . . , `} we have that γ′i + di = γ′i−1. This fact will be required
below. Observe that γ′i ≥ 0 for all i 6= j (or the maximality of γ is contradicted) and γ′j = 0.
For i > 1, it is immediate that,

γ′i + di =

(
γ −

i∑
i′=1

di′

)
+ di = γ −

i−1∑
i′=1

di′ = γ′i−1 .

For i = 1 we have γ′` = γ −∑`
i′=1 di′ = γ and γ′1 = γ − d1 therefore, γ′1 + d1 = γ = γ′` (which

is γ′0 as we are working with indices modulo `).
For notational simplicity let S = Txj ,xj+m−γ−1. We will show that for all i ∈ {1, 2, . . . , `},

there is an occurrence of S in Tyi,yi+m−1 starting at offset γ′i, i.e. that Tyi+γ′i,yi+γ′i+m−γ−1 = S.
The result then follows almost immediately as γ′j = 0 and we will show that γ ≤ m/4.

We proceed by induction on i in decreasing order modulo `, starting with i = (j − 1)
mod ` and ending with i = j mod `. That is we consider i = (j− 1) down to i = 1 followed
by i = `, down to i = j.

We first show that in both the base case and the inductive step there is an occurrence
of S in Txi+1,xi+1+m−1 starting at offset γ′i+1. For the base case, i = (j − 1) mod `, by the
definition of S, we immediately have that Txi+1+γ′i+1,xi+1+γ′i+1+m−γ−1 = S as i + 1 = j and
γ′j = 0. For the inductive step where i 6= (j−1) mod `, by the inductive hypothesis we have
that Tyi+1+γ′i+1,yi+1+γ′i+1+m−γ−1 = S. Further as i+ 1 6= j, {xi+1, yi+1} matches and therefore,

Txi+1+γ′i+1,xi+1+γ′i+1+m−γ−1 = Tyi+1+γ′i+1,yi+1+γ′i+1+m−γ−1 = S .

Both the base case and the inductive step are now proven in an identical manner.
As the edges {xi, yi} form a cycle, we have that have that v(xi+1) = v(yi) and further

that xi+1 = yi+di+1. This means that Tyi,yi+m−1 and Txi+1,xi+1+m−1 overlap in T bym−|di+1|

13

characters. I.e. there is a substring of T of lengthm−|di+1| which is a prefix of Txi+1,xi+1+m−1

and a suffix of Tyi,yi+m−1 or visa-versa (depending on the sign of di+1). In particular this
implies that,

S = Txi+1+γ′i+1, xi+1+γ′i+1+m−γ−1 = T(yi+di+1)+γ′i+1, (yi+di+1)+γ′i+1+m−γ−1 = Tyi+γ′i, yi+γ′i+m−γ−1 .

The first equality follows because xi+1 = yi+di+1 and the second because γ′i+1+di+1 = γ′i.
This completes the inductive argument.

Finally observe that when i = j, we have that S occurs in Tyj ,yj+m−1 starting at offset
γ′i = 0. I.e. Txj ,xj+m−γ−1 = Tyj ,yj+m−γ−1. As |dj| < m/(9 · log b) and further ` ≤ 2 log b + 1

we have that γ =
∑j

i=1 di ≤
∑`

i=1 |di| ≤ m/4, completing the proof.

Processing lock-stepped Cycles We use Lemma 7 as follows. First we identify the edge
{xj, yj}. This can be achieved by calculating

∑j
i=1 di for all i by traversing the cycle in

O(log b) time. We then delete this edge from the graph, breaking the cycle. However we
still need to check that Txj+m/2,xj+m−1 = Tyj+m/2,yj+m−1. This is achieved by inserting a new
pair, {xj + m/2, yj + m/2} into the next round where m ← mk−1 = mk/2. Processing all
lock-stepped cycles in this way takes O(b log b) time in total as we remove an edge each time.

5.1.2 Unlocked Cycles

The remaining case is when we find an unlocked cycle in the graph (V,E). For an unlocked
cycle, the key property is given in Lemma 8. This lemma is similar to the previous lemma
for lock-stepped cycles in that it identifies a particular pair, {xj, yj} such that if every other
pair {xi, yi},i 6= j matches then {xj, yj} matches if and only if two conditions hold. The first
condition is the same as the condition in the previous Lemma. The second condition requires
that the first three-quarters of both the strings have a small period. This second condition
may seem nonintuitive but, when viewed in the correct light, follows fairly straight-forwardly
from the fact that the cycle is unlocked.

Again, we begin with an overview of the proof technique. We focus on the forward
direction, that is we assume that all {xi, yi} match (including i = j) and show that the
two properties required indeed hold. The reverse direction follows from the observation that
Txj+m/2,xj+m−1 contains a full period from Txj+m/2,xj+m−1. This overview is again given with
reference to the example in Figure 2(b). This illustration is constructed in the same manner
as the illustration for a lock-stepped cycle in Figure 2(a). However this time it illustrates the
unlocked cycle {p9, p3}, {p2, p4} and {p5, p10} where v(p3) = v(p2) = v1, v(p4) = v(p5) = v2

and v(p10) = v(p9) = v3. See Section 5.1.1 for an explanation of the diagram.
Again consider the string S, which is a prefix of Tp3,p3+m−1. Assume that all three pairs

{p9, p3}, {p2, p4} and {p5, p10} match. Similarly to for unlocked cycles, we can then show
(as is illustrated) that the string S occurs as a substring of each of Tp2,p2+m−1, Tp4,p4+m−1,
Tp5,p5+m−1, Tp10,p10+m−1 and in particular Tp9,p9+m−1. Further as (by assumption), Tp9,p9+m−1

equals Tp3,p3+m−1 and so we have found two occurrences of S in Tp3,p3+m−1. Crucially we
show in the proof that as the cycle is unlocked these are two distinct occurrences of S, which

14

are |ρ| characters apart. This in turn implies that Tp3,p3+m−1 (and hence also Tp9,p9+m−1) has
a long, periodic prefix as required.

Lemma 8. Let {xi, yi} for i = 1 . . . ` be the edges in an unlocked cycle of length `. Further
let j = arg max

∑j
i=1 di. If {xi, yi} match for all i 6= j then {xj, yj} matches iff both the

following hold:

1. Txj+m/2,xj+m−1 = Tyj+m/2,yj+m−1

2. Txj ,xj+3m/4−1 and Tyj ,yj+3m/4−1 both have period |ρ| = |∑`
i=1 di| ≤ m/4

Proof. In the following we will work with indices modulo `, i.e. x`+1 equals x1. We begin
proving the forward direction. That is we assume that {xi, yi} matches for i = j (as well
as for all i 6= j) and prove that both conditions hold. The first condition is immediate and
hence we focus on the second.

As in the proof of Lemma 7, let γ =
∑j

i=1 di and for all i, let γ′i = γ −∑i
i′=1 di′ . Recall

that γ′j = 0 and γ′i ≥ 0 for all i 6= j (or the maximality of γ is contradicted). For i > 1, it is
easy to check that, as in the proof of Lemma 7, γ′i + di = γ′i−1. However, unlike in Lemma 7,
we do not have that γ′1 + d1 = γ′`. In Lemma 7 this followed because δ =

∑`
i=1 di = 0, which

is not true here. The first portion of this proof is similar to the proof of Lemma 7 but with
some small modifications.

We will begin by showing that for all i ∈ {1, 2, . . . , `}, S = Txj ,xj+m−γ−1 occurs in each
Txi,xi+m−1 at offset γi i.e. that the string Txi+γ′i,xi+γ′i−γ−1 = S. We first proceed by induction
on i in decreasing order, starting with i = j and halting with i = 1. The base case, i = j is
immediate as γ′j = 0.

We now assume by the inductive hypothesis that Txi+γ′i,xi+γ′i+m−γ−1 = S. As the edges
{xi, yi} form a cycle, we have that v(xi) = v(yi−1) for all i. By the definition of v(xi) and
v(yi−1) we have that di = xi − yi−1. In other words, Tyi−1,yi−1+m−1 and Txi,xi+m−1 overlap in
T by m− |di| characters. Analgously to in the proof of Lemma 7, this implies an occurrence
of S in Tyi−1,yi−1+m−1 starting at γ′i + di = γ′i−1 ≥ 0. Finally observe that for all i, we have
that Tyi−1,yi−1+m−1 = Txi−1,xi−1+m−1 so S occurs in Txi−1,xi−1+m−1 starting at γ′i, completing
the inductive case.

We now repeat the induction on i in increasing order, starting with i = j and halting
with i = `. We now assume by the inductive hypothesis that Txi+γ′i,xi+γ′i+m−γ−1 = S. The
argument is almost identical but in reverse. We provide the argument for completeness.

We have that Tyi,yi+m−1 = Txi,xi+m−1 so by the inductive hypothesis, S occurs in Tyi,yi+m−1,
at offset γ′i. As the edges {xi, yi} form a cycle, we have that v(xi+1) = v(yi) for all i. As
di+1 = xi+1−yi, the substrings Tyi,yi+m−1 and Txi+1,xi+1+m−1 overlap in T bym−|di+1| charac-
ters. Again, this implies an occurrence of S in Txi+1,xi+1+m−1 starting at γ′i−di+1 = γ′i+1 ≥ 0.
Finally observe that for all i, we have that Tyi+1,yi+1+m−1 = Txi+1,xi+1+m−1 so S occurs in
Txi+1,xi+1+m−1 starting at γ′i, completing the inductive case.

We now have that S = Txj ,xj+m−γ−1 occurs in each Txi,xi+m−1 at offset γi. In particular
S occurs in Ty1,y1+m−1 at offset γ′1 - that is, starting at x1 + γ′1 in T . There is also an
occurrence of S in Tx`,x`+m−1 at offset γ′` - that is, starting at x` + γ′` in T . However we have

15

that {xi, yi} form a cycle, we have that v(x1) = v(y`) and hence d1 = x1 − y`. These two
occurrences are therefore |(x1 + γ′1)− (x` + γ′`)| = |d1 + γ′1 − γ′`| = |ρ| characters apart in T .
Therefore S has period |ρ|. As |dj| < m/(9 · log b) and further ` ≤ 2 log b + 1 we have that
γ =

∑j
i=1 di ≤

∑`
i=1 |di| = |ρ| ≤ m/4. In conclusion, S has period |ρ| ≤ m/4, length at least

3m/4 and occurs at the start of Txj ,xj+m−1 (and Tyj ,yj+m−1) as required.
We now prove the reverse direction. That is that if both conditions hold that {xj, xj}

matches. By condition 2, both Txj ,xj+3m/4−1 and Tyj ,yj+3m/4−1 are periodic with period at
most m/4. Further, by condition 1 we have that Txj+m/2,xj+m−1 = Tyj+m/2,yj+m−1. Observe
that Txj+m/2,xj+m−1 contains at least a full period of characters from Txj ,xj+3m/4−1, and
similarly with Tyj+m/2,yj+m−1 and Tyj ,yj+3m/4−1 analogously. In other words, the first full
period of Txj ,xj+3m/4−1 matches the first full period of Tyj ,yj+3m/4−1. By the definition of
periodicity we have that Txj ,xj+3m/4−1 = Tyj ,yj+3m/4−1 and hence that Txj ,xj+m−1 = Tyj ,yj+m−1,
i.e. {xj, yj} matches.

Processing unlocked cycles We can again identify edge {xj, yj} as well as ρ in O(log b)
time by inspecting the cycle. This follows immediately from the statement of the lemma and
the definition of ρ. We again delete the pair, {xj, yj} (along with the edge in the graph) and
insert a new pair, {xj +m/2, yj +m/2} into the next round where m← mk−1 = m/2. This
checks the first property.

We also need to check the second property, i.e. that both strings Txj ,xj+3m/4−1 and
Tyj ,yj+3m/4−1 have |ρ| as a period. We do not immediately check the periodicity, we instead
delay computation until the end of round k, after all cycles have been processed. At the
current point in the algorithm, we simply add the tuple ({x, y}, ρ) to a list, Π of text
substrings to be checked later for periodicity. This list uses O(b) space as at most b edges are
considered. Excluding checking for periodicity, processing all unlocked cycles takes O(b log b)
time in total.

Checking for Substring Periodicity The final task in round k is to scan the text and
check that for each ({x, y}, ρ) ∈ Π, |ρ| is a period of both Tx,x+3m/4−1 and Ty,y+3m/4−1. We
process the tuples in left to right order. On the first pass we consider Tx,x+3m/4−1 for each
({x, y}, ρ) ∈ Π. In the second pass we consider y. The two passes are identical and we focus
on the first.

We begin by splitting the tuples greedily into groups in left to right order. A tuple
({x, y}, ρ) is in the same group as the previous tuple iff the previous tuple ({x′, y′}, ρ′) has
x− x′ ≤ m/4. Let Tz,z+m′−1 be the substring of T which spans every substring, Tx,x+3m/4−1

which appears in some ({x, y}, ρ) in a single group of tuples. We now apply the classic
periodicity lemma stated below.

Lemma 9 (see e.g. [10]). Let S be a string with periods ρ1 and ρ2 and with |S| > ρ1 + ρ2.
S has period gcd(ρ1, ρ2), the greatest common divisor of ρ1 and ρ2. Also, if S has period ρ3

then S has period α · ρ3 ≤ |S| for any integer α > 0.

First observe that consecutive tuples ({x, y}, ρ) and ({x′, y′}, ρ′) in the same group have
overlap least m/2 ≥ |ρ| + |ρ′|. Therefore by Lemma 9, if Tx,x+3m/4−1 has period |ρ| and

16

Tx′,x′+3m/4−1 has period |ρ′| then their overlap also has gcd(|ρ|, |ρ′|) as a period. However as
their overlap is longer than a full period in each string, both Tx,x+3m/4−1 and Tx′,x′+3m/4−1

also have period gcd(|ρ|, |ρ′|). By repeat application of this argument we have that if for
every tuple ({x, y}, ρ), the substring Tx,x+3m/4−1 has period |ρ| then Tz,z+m′−1 has a period
equal to the greatest common divisor of the periods of all tuples in the group, denoted g. To
process the entire group we can simply check whether Tz,z+m′−1 has period g in O(m′) time.
If Tz,z+m′−1 does not have period g, we can safely abort the verifier. If Tz,z+m′−1 has period
g then by Lemma 9, for each ({x, y}, ρ) in the group, Tx,x+3m/4−1 has period |ρ| as g divides
|ρ|. As every m′ ≥ 3m/4 and the groups overlap by less than m/2 characters, this process
takes O(n) total time.

6 Time-Space Tradeoffs for Batched LCP Queries
We provide an overview of the techniques used to obtain the time-space tradeoff for the
batched LCP process, as it closely follows those of Section 3. In Section 3 the algorithm
simulates concurrent binary searches in order to determine the LCP of each input pair (with
some extra work at the end). The idea for obtaining the tradeoff is to generalize the binary
search to an α-ary search. So in the kth round the input is a set of q pairs denoted by Pk,
where we are guaranteed that for any (i, j) ∈ Pk, LCP (i, j) ≤ 2logn−(k−1) logα, and the goal
of the kth iteration is to decide for any (i, j) ∈ Pk if LCP (i, j) ≤ 2logn−k logα or not. From
a space perspective, this means we need O(αq) space in order to compute α fingerprints for
each index in any (i, j) ∈ Pk. From a time perspective, we only need to perform O(logα q)
rounds before we may begin the final round. However, each round now costs O(n + αq), so
we have the following trade-off.

Theorem 4. Let 2 ≤ α ≤ n. There exists a randomized Monte-Carlo algorithm that with
high probability correctly answers a batch of q LCP queries on suffixes from a string of length
n. The algorithm uses O((n+ αq) logα q) time and O(αq) space in the worst case.

In particular, for α = 2, we obtain Theorem 1 as a corollary. Consequently, the total
time cost for constructing the sparse suffix tree in O(αb) space becomes

O

(
n

log2 b

logα
+
αb log2 b

logα

)
.

If, for example, α = bε for a small constant ε > 0, the cost for constructing the sparse suffix
tree becomes O(1

ε
(n log b+ b1+ε log b)), using O(b1+ε) words of space. Finally by minimizing

with the standard O(n) time, O(n) space algorithm we achieve the stated result of O(n log b)
time, using O(b1+ε) space.

7 Sparse Position Heaps
So far our focus has been on sparse suffix trees and arrays. In this section, we consider
another sparse index, the sparse position heap, and show that it can be constructed much

17

faster than the sparse suffix tree or array. However, the faster construction time comes at
the cost of slower pattern matching queries.

7.1 Position Heaps

We start by reviewing position heaps. The position heap HT over a text T1,n is a blend of a
trie over T ’s suffixes and a heap over its indices [8]:

• The nodes are exactly the n indices (positions) from T such that the max-heap property
is satisfied: a node i is larger than all nodes below i.

• The edges are labeled with single letters from T as in a usual trie such that the following
constraint is satisfied: for every node i, the letters on the root-to-i path are a prefix of
the suffix Ti.

See Figure 3 for an example. This definition almost directly results in the following naive
construction algorithm: start with a tree consisting of a single node n only. Now assume
that Hi+1

T , the position heap for Ti+1,n for some i < n, has already been constructed. Then
Hi
T is obtained by first matching Ti in Hi+1

T as long as possible, thereby finding the longest
prefix Ti,j of Ti that is a root-to-node path in Hi+1

T . Then a new node i is appended as a
child to the node h where the search ended, and the new edge (h, i) is labeled with letter
tj+1. In the end, H1

T is the desired result HT .
Finding all k occurrences of a pattern P1,m using HT works as follows: first try matching

P as long as possible in HT , thereby finding the longest prefix P1,j of P that is a root-to-node
path i1 → i2 → · · · → ij in HT . The indices {i1, . . . , ij} are potential candidates for matches
of P ; since j ≤ m, they can be checked naively (meaning one-by-one character comparisons
between P and the text) in total time O(m2). Further, if j = m (the pattern has been
fully matched), then all nodes below ij match P for sure; they can be returned by a simple
traversal of the subtree below ij. The total time is O(m2 + k).

b a

ab

a

b

a

a

a a

b

b

b

b

b

16

15 14

1312 11

10

8

7 9

65

4 3 2

1

(a) The full position heap for T .

a

a

b

a

b

b

b

16

13 11

104

5

2

1

(b) The sparse position heap.

Figure 3: (a) Position heap for the text T1,16 =
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

a b b a a b a b b a b a a b a $.
(b) Sparse position heap for positions I = {1, 2, 4, 5, 10, 11, 13, 16} in T .

18

The position heap can also be enhanced with maximal reach pointers that allow for
optimal O(m+ k) search time; however, we do not review this technique here, since it does
not seem to generalize for a sparse set of positions.

The definition suggests that position heaps should be “easier” to compute than suffix trees
and suffix arrays, since they do not sort the entire suffixes, but still allow for fast pattern
matching queries. This is particularly evident when only a sparse set I of b suffixes is to be
indexed and those b suffixes are inserted using the naive construction algorithm above. Since
the time of inserting a suffix i ∈ I can be upper bounded by the number of indexed suffixes
to the right of i, the running time of the naive algorithm is O(b2), in particular optimal O(n)
for b = O(

√
n). Recall that the naive suffix tree insertion algorithm, on the other hand,

would result in O(nb) time, which is never linear unless b = O(1).
Hence, from now on we can assume n/b ≤ b.

7.2 A Monte-Carlo Construction Algorithm

Our basis is the naive construction algorithm sketched in Section 7.1: we scan T from right
to left, and whenever we encounter an indexed suffix from I, we insert it into the already
existing heap to obtain the new one. To formalize this, assume that I is given as a sorted
array I[1, b]. Assume that Hk+1

T , the sparse position heap for suffixes I[k+ 1, b], has already
been constructed. Let i = I[k] be the next position in I. Our aim is to insert the new suffix
Ti and thereby obtain Hk

T , faster than in O(b) time.
Recall that the task upon insertion of Ti is to find the longest prefix Ti,j of Ti that is

already present in Hk+1
T . Now instead of matching the suffix from start to end, we would

like to binary search over all possible prefixes of Ti to find the longest prefix that already
exists.1 If such an existential test could be done in O(1) time and since the longest possible
such prefix is of length O(b), the binary search would run in O(log b) time. This would result
in O(b log b) running time.

The problem is to check (in constant time) if and where the prefixes Ti,i+` occur in Hk+1
T .

This is where the fingerprints come into play, again. First, we use a hash table that stores
the nodes of Hk+1

T and is indexed by the fingerprints of the respective root-to-node paths.
Now assuming that we have the fingerprint for some prefix Ti,i+`, then we could easily check
the existence of a node representing the same string in O(1) time. If, finally, Ti,j is the
longest such prefix and i is inserted into Hk+1

T as a child of h, we can also insert i into the
hash table (using the fingerprint FP[i, j]).

The remaining problem is how to compute the fingerprints. Storing the values FP[1, i] for
all 1 ≤ i ≤ n would do the trick, but is prohibitive due to the extra space of O(n). Instead,
we do the following indirection step: in a preprocessing step, store only the values FP[1, i]
at b regularly spaced positions i ∈ {n/b, 2n/b, . . . }; this takes O(b) space and O(n) overall
time. We also precompute all powers rx mod p for x ≤ b in O(b) time and space (r and p
are the constants needed for the fingerprints, see Section 2). Then finding the correct node
h in Hk+1

T to which i should be appended amounts to the following steps (see Figure 4):
1This can be regarded as an x-fast trie-like search [24].

19

n/b

T =
j i+ `

FP(1, i− 1)

FP(1, i+ `)

≤ b

FP(i, i+ `)

FP(1, j)

i

Figure 4: Sketch for computing FP[i, i + `]. Fingerprints for prefixes of T ending at solid
positions are precomputed (here: FP[1, j] and FP[1, i+ `]).

1. Compute FP[1, i− 1], by scanning from i backwards until finding the next multiple j
of n/b to the left of i (for which FP[1, j] has been precomputed), and using the formula

FP[1, i− 1] = FP[1, j] · ri−j−1 + FP[j + 1, i− 1] mod p .

Note that i− j ≤ n/b ≤ b, hence all necessary powers of r are precomputed.

2. Perform a binary search over the prefixes Ti,i+`, for i+ ` being a multiple of n/b. Using
the result from step (1) and the precomputed fingerprints, the desired fingerprints can
be computed in O(1) time by

FP[i, i+ `] = FP[1, i+ `]− FP[1, i− 1] · r` mod p ,

and hence the binary search takes O(log b) time (note again ` ≤ b).

3. Let h′ be the node where the binary search ended with prefix Ti,j′ . From h′, continue
matching tj′+1, tj′+2, . . . in the trie until no further match is possible. This yields node
h, the longest prefix of Ti that is present in Hk+1

T .

The time for steps (1) and (3) is O(n/b). Since there are b suffixes to be inserted, these
steps take overall O(n) time. The time for step (2) is O(b log b) in total. The fingerprint
needed for the insertion of i into the hash table can be either computed along with step (3)
in O(n/b) time, or from the fingerprint of the parent node h in constant time. The claim
follows.

Theorem 5. There exists a randomized Monte-Carlo algorithm that with high probability
correctly constructs the sparse position heap on b suffixes from a string of length n. The
algorithm uses O(n+ b log b) time and O(b) space in the worst case, and finding the k occur-
rences of any pattern of length m takes O(m2 + k) time.

8 Conclusions
The main open problem in sparse text indexing is whether we can obtain complexity bounds
that completely generalise those of full text indexing. More specifically, is it possible to

20

construct a sparse text index for b arbitrary positions in O(b) space and O(n) time (for
integer alphabets) that support pattern matching queries in O(m+ k) time, where m is the
length of the pattern and k is the number of occurrences?

In this paper we have shown an O(n log2 b) time construction algorithm for sparse suffix
trees and arrays. This makes significant progress towards the desired O(n) bound, but closing
the generalisation gap entirely remains an open question.

As an intermediate step, it might be advantageous to consider trade-offs between the
construction time and space as well as the query time of the index. In this context we showed
that the sparse position heap can be constructed in O(n + b log b) time while supporting
pattern matching queries in O(m2 + k) time. This indicates that relaxing the query time
constraint makes the problem more approachable, and thus it might be possible to construct
a sparse text index in O(n) time and O(b) space for slower pattern matching queries.

Fingerprints play a fundamental role in our results, and it would be interesting if this
technique can be further improved, e.g. by constructing a faster deterministic verifier for
batched LCP queries – perhaps by generalizing the naming technique of Karp, Miller and
Rosenberg [7, 15] to the sparse case. However, it would perhaps be of even greater interest
if deterministic solutions similar to the well-known suffix tree and suffix array construction
algorithms exist.

After the first appearance of our work, two interesting results have been published that
make further progress on the problem.

I et al. [12] showed that the sparse suffix tree or array can be constructed in O(n log b)
time using O(b) space, thus improving our work by a factor of log b. Their solution also relies
on Karp-Rabin fingerprints, but they take an approach very different from ours. Interest-
ingly, they also show that O(n) time can be achieved if we allow O(b log b) space, and they
significantly improve the verification step needed to obtain a Las-Vegas algorithm.

Fischer et al. [11] recently considered the problem on rewritable texts, i.e., where we with
some restrictions can reuse the O(n) memory cells holding the text. In this model they give a
worst-case deterministic algorithm with a running time that is close to linear in the number
of positions needed to distinguish the b suffixes, which in some cases can be sublinear in n.

References
[1] M. Ajtai, J. Komlós, and E. Szemerédi. An O(n log n) Sorting Network. In Proc. 15th

STOC, pages 1–9, 1983.

[2] A. Andersson, N. J. Larsson, and K. Swanson. Suffix Trees on Words. In Proc. 7th
CPM (LNCS 1075), pages 102–115, 1996.

[3] A. Andersson, N. J. Larsson, and K. Swanson. Suffix Trees on Words. Algorithmica,
23(3):246–260, 1999.

[4] K. E. Batcher. Sorting Networks and Their Applications. In Proc. AFIPS Spring JCC,
pages 307–314, 1968.

21

[5] J. L. Bentley and R. Sedgewick. Fast algorithms for sorting and searching strings. In
Proc. 8th SODA, pages 360–369, 1997.

[6] S. Burkhardt and J. Kärkkäinen. Fast Lightweight Suffix Array Construction and Check-
ing. In Proc. 14th CPM (LNCS 2676), pages 55–69, 2003.

[7] M. Crochemore and W. Rytter. Usefulness of the Karp-Miller-Rosenberg algorithm in
parallel computations on strings and arrays. Theor. Comput. Sci., 88(1):59–82, 1991.

[8] A. Ehrenfeucht, R. M. McConnell, N. Osheim, and S.-W. Woo. Position heaps: A
simple and dynamic text indexing data structure. J. Discrete Algorithms, 9(1):100–121,
2011.

[9] P. Ferragina and J. Fischer. Suffix Arrays on Words. In Proc. 18th CPM (LNCS 4580),
pages 328–339, 2007.

[10] N. J. Fine and H. S. Wilf. Uniqueness Theorems for Periodic Functions. Proc. AMS,
16(1):109–114, 1965.

[11] J. Fischer, T. I, and D. Köppl. Deterministic Sparse Suffix Sorting on Rewritable Texts.
In arXiv:1509.07417, 2015.

[12] T. I, J. Kärkkäinen, and D. Kempa. Faster Sparse Suffix Sorting. In Proc. 31st STACS,
pages 386–396, 2014.

[13] S. Inenaga and M. Takeda. On-line linear-time construction of word suffix trees. In
Proc. 17th CPM (LNCS 4009), pages 60–71, 2006.

[14] J. Kärkkäinen and E. Ukkonen. Sparse Suffix Trees. In Proc. 2nd COCOON (LNCS
1090), pages 219–230, 1996.

[15] R. M. Karp, R. E. Miller, and A. L. Rosenberg. Rapid identification of repeated patterns
in strings, trees and arrays. In Proc. 4th STOC, pages 125–136. ACM, 1972.

[16] R. M. Karp and M. O. Rabin. Efficient Randomized Pattern-Matching Algorithms.
IBM J. Res. Dev., 31(2):249–260, 1987.

[17] T. Kasai, G. Lee, H. Arimura, S. Arikawa, and K. Park. Linear-Time Longest-Common-
Prefix Computation in Suffix Arrays and Its Applications. In Proc. 12th CPM (LNCS
2089), pages 181–192, 2001.

[18] R. Kolpakov, G. Kucherov, and T. A. Starikovskaya. Pattern Matching on Sparse Suffix
Trees. In Proc. 1st CCP, pages 92–97, 2011.

[19] U. Manber and G. Myers. Suffix Arrays: A New Method for On-Line String Searches.
SIAM J. Comput., 22(5):935–948, 1993.

22

[20] D. R. Morrison. Patricia—practical algorithm to retrieve information coded in alphanu-
meric. J. ACM, 15(4):514–534, 1968.

[21] M. Paterson. Improved Sorting Networks with O(logN) Depth. Algorithmica, 5(1):65–
92, 1990.

[22] T. Uemura and H. Arimura. Sparse and truncated suffix trees on variable-length codes.
In Proc. 22nd CPM (LNCS 6661), pages 246–260, 2011.

[23] P. Weiner. Linear Pattern Matching Algorithms. In Proc. 14th FOCS (SWAT), pages
1–11, 1973.

[24] D. E. Willard. Log-logarithmic worst-case range queries are possible in space Θ(n).
Inform. Process. Lett., 17(2):81–84, 1983.

23

	Introduction
	Our Results

	Preliminaries
	Batched LCP Queries
	The Algorithm
	Runtime and Correctness

	Constructing the Sparse Suffix Tree
	Verifying the Sparse Suffix and LCP Arrays
	Proof of Lemma 4
	Lock-stepped Cycles
	Unlocked Cycles

	Time-Space Tradeoffs for Batched LCP Queries
	Sparse Position Heaps
	Position Heaps
	A Monte-Carlo Construction Algorithm

	Conclusions

