=}
—
=

i

String Indexing for Patterns with Wildcards

Philip Bille!, Inge Li Ggrtz!, Hjalte Wedel Vildhgj', and Sgren Vind!

!Technical University of Denmark, DTU Informatics

SWAT 2012, Helsinki
July 6, 2012

String Indexing for Patterns with Wildcards

Problem Definition

Build an index for a string t € ¥*, that, given a query pattern p, quickly
can report where p occurs in t.

p:po *Pl X ... *p]
Example

t = combinatorialpatternmatching

p=xat x *x xn

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
¢ omb imnat or ialwpat t e

rnma<t c¢c h ing

* a t * * * n

Two Simple Solutions
Suffix Tree Search

P = *nax

1234567
t= bananas

Two Simple Solutions
Suffix Tree Search

p = *na*

1234567
t= bananas

Two Simple Solutions
Suffix Tree Search

p = fna*

1234567

t= bananas A
X
A

g

o
oxo/
wo\

Two Simple Solutions
Suffix Tree Search

p = *nax

1234567

t= bananas A
X
A

g

0,
oxo/
wo\

Two Simple Solutions
Suffix Tree Search

P = *nax

1234567

t = bananas /;\
X
A

u-

>O\Pu
oxo/
wo\

Two Simple Solutions

Suffix Tree Search

p — kxnasxk
1234567
t= bananas
[«—]
fe—>

Two Simple Solutions
Suffix Tree Search

P = *nax

1234567

t= bananas
k] %
& K X

Time: O(o/m + occ)
Space: O(n)

Two Simple Solutions

Simple Linear Time Index

—(O—¢seurueq.
P
go/
5
u/

L)

@
S
®

”;<\
®,

aO—+$
wo\&s
nO—¢s

MO\‘K‘SQ
~O—gs

Two Simple Solutions

Simple Linear Time Index

—(O—gseueueq.
o
%/
&
u/

[

2N
S.
B

"q\
®,
aO—$
wo\%’s
nO——¢s

NO\S‘SQ
2O=—$S

Two Simple Solutions

Simple Linear Time Index

/

Pad

bananas$—O—

Q.

D~
m\o
s$—COv©
aw

mw\O4
bmh%

/ma\o_b

s$—COwn
5&/03

/Ama|06

2,

/vﬂm$|04

a,
mm%/O ~

awma./OS

SO

Two Simple Solutions

Simple Linear Time Index

* bwms
/OZ
s$—0Ow©
s, s <
* m.m.%
Os$—O% = O«

Two Simple Solutions

Simple Linear Time Index

Two Simple Solutions

Simple Linear Time Index

D = *nax

% \ommés

\oﬁmﬁgs
bmw%
o O

bananas$—O—

wm%/oné

Two Simple Solutions

Simple Linear Time Index

D = *nax

! 5—Om +
@/ij%/Ol]_Dl/
++
m\O © /jmw\04 er\
mm%loz ~—
s$—Ov0 _ Ow o O
23 \OAM% L w
p —os E g
/omaii Bw
® bmh%/o
~
—Own
P T
* ﬂ.wm.m.lo_l.
s$—COwn
- o O o
—O
aﬁm&./OB -
~O—
o *\O‘m@\OB
2 __O=$—0w
* wm%
\omaés ~Oen
bmw%
o O
bananas$—O— \jmw\04
« mms/OZ

The Longest Common Prefix Data Structure !
LCP Queries

Let C; be a set of substrings of the indexed string. Consider the
following query on the compressed trie T(C;) storing the strings in C;.

LCP(x, 1, ¢): The location where the search for x € ¥* stops when
starting in location ¢ € T(C;).

Example: x = angry and C; = suff(bananas).

ff x \O

LCP K
(x b \b’

7{‘"& A

T(C)

1 R. Cole, L. Gottlieb, and M. Lewenstein.

Dictionary matching and indexing with errors and don’t cares. Proc. 36th STOC, 2004.

The Longest Common Prefix Data Structure !
An Application
Search for subpatterns in the suffix tree using the LCP data structure:
» Build the LCP data structure for the suffix tree.

» Search with a query pattern containing wildcards:

» Search for complete subpatterns using LCP queries.
» Branch on a wildcard as in the simple suffix tree solution.

1 R. Cole, L. Gottlieb, and M. Lewenstein.

Dictionary matching and indexing with errors and don’t cares. Proc. 36th STOC, 2004.

The Longest Common Prefix Data Structure !

An Application
Search for subpatterns in the suffix tree using the LCP data structure:
» Build the LCP data structure for the suffix tree.
» Search with a query pattern containing wildcards:

» Search for complete subpatterns using LCP queries.
» Branch on a wildcard as in the simple suffix tree solution.

How fast can you answer an LCP query?

» O(loglogn) time and O(nlogn) space.

= Index with query time O(m + ¢’ loglogn + occ) and space O(nlogn).

» We show that you can also do O(logn) time and O(n) space.
= Index with query time O(m + o’ logn + occ) and space O(n) .

1 R. Cole, L. Gottlieb, and M. Lewenstein.

Dictionary matching and indexing with errors and don’t cares. Proc. 36th STOC, 2004.

The Longest Common Prefix Data Structure !
An Application
Search for subpatterns in the suffix tree using the LCP data structure:
» Build the LCP data structure for the suffix tree.

» Search with a query pattern containing wildcards:

» Search for complete subpatterns using LCP queries.
» Branch on a wildcard as in the simple suffix tree solution.

How fast can you answer an LCP query?

» We show that you can also do O(logn) time and QO(n) space.

= Index with query time O(m + o’ logn + occ) and(space O(n)).

R. Cole, L. Gottlieb, and M. Lewenstein.
Dictionary matching and indexing with errors and don’t cares. Proc. 36th STOC, 2004.

1

SOLUTION 1

An Unbounded Wildcard Index
Using Linear Space

Query Time: O(m + o’ loglogn + occ)
Space Usage: O(n)

An Unbounded Wildcard Index Using Linear Space
ART Decomposition 2
Definition:
» A bottom tree is a maximal subtree with at most logn leaves.
» Vertices not in a bottom tree constitute the top tree.
Example: A tree with n = 16 leaves (logn = 4).

ZS, Alstrup, T. Husfeldt, and T. Rauhe
Marked ancestor problems. Proc. 39th FOCS, 1998.

An Unbounded Wildcard Index Using Linear Space
ART Decomposition 2
Definition:
» A bottom tree is a maximal subtree with at most logn leaves.
» Vertices not in a bottom tree constitute the top tree.
Example: A tree with n = 16 leaves (logn = 4).

ZS, Alstrup, T. Husfeldt, and T. Rauhe
Marked ancestor problems. Proc. 39th FOCS, 1998.

®)
J

An Unbounded Wildcard Index Using Linear Space
ART Decomposition 2
Definition:
» A bottom tree is a maximal subtree with at most logn leaves.
» Vertices not in a bottom tree constitute the top tree.
Example: A tree with n = 16 leaves (logn = 4).

B4 Bg Bo

ZS, Alstrup, T. Husfeldt, and T. Rauhe
Marked ancestor problems. Proc. 39th FOCS, 1998.

An Unbounded Wildcard Index Using Linear Space

ART Decomposition 2
Definition:
» A bottom tree is a maximal subtree with at most logn leaves.
» Vertices not in a bottom tree constitute the top tree.
Example: A tree with n = 16 leaves (logn = 4).

B3

By

Bs Bg By
B

Bg Bo

By
Property: The top tree has O(lo’;n) leaves.

ZS, Alstrup, T. Husfeldt, and T. Rauhe
Marked ancestor problems. Proc. 39th FOCS, 1998.

An Unbounded Wildcard Index Using Linear Space

Obtaining the Index

» Use the ART decomposition to decompose the suffix tree into a
number of logarithmic sized bottom trees and a single top tree
containing O(-%-) leaves.

logn
» Store the top and bottom trees in LCP data structure.

» On the top tree T’: Add support for O(loglogn) time LCP queries
using the method by Cole et al. 3

> This requires space O(|T’[10g |T") = O(j557 108(1557)) = O(n).
» On the bottom trees T(C,), ..., T(Cy): Add support for O(logn)
time LCP queries using our new method.
» This requires O(}_7_, |Ci|) = O(n) space.
» The query time becomes O(log |Ci|) = O(loglogn).
This gives an unbounded wildcard index using O(n) space with query
time O(m + ¢’ loglogn + occ).

3R, Cole, L. Gottlieb, and M. Lewenstein.

Dictionary matching and indexing with errors and don’t cares. Proc. 36th STOC, 2004.

26/3

SOLUTION 2

A Time-Space Trade-Off
for k-Bounded Wildcard Indexes

Query Time: O(m + §' loglogn + occ)
Space Usage: O(nlogl ' (n) logn)

A Time-Space Trade-Off for Bounded Wildcard Indexes

General Idea

Reduce the branching factor of the suffix tree search from o to 8 by
creating wildcard trees. Query time: O(m + (# loglogn + occ) when
using the LCP data structure.

T3(C)

A Time-Space Trade-Off for Bounded Wildcard Indexes

General Idea

Reduce the branching factor of the suffix tree search from o to 8 by
creating wildcard trees. Query time: O(m + (# loglogn + occ) when
using the LCP data structure.

T (suffs (lightstrings(v)))
*

R
B —1 lightstrings(v)

T3(C)

A Time-Space Trade-Off for Bounded Wildcard Indexes

General Idea

Reduce the branching factor of the suffix tree search from o to 8 by
creating wildcard trees. Query time: O(m + (# loglogn + occ) when
using the LCP data structure.

T (suffo (lightstrings(v)))
*

O

B —1 lightstrings(v)

T3(C)

T5(C)

A Time-Space Trade-Off for Bounded Wildcard Indexes

General Idea

Reduce the branching factor of the suffix tree search from o to 8 by
creating wildcard trees. Query time: O(m + (# loglogn + occ) when
using the LCP data structure.

T (suffo (lightstrings(v)))
*

R
B —1 lightstrings(v)

T3(C)

T5(C)

T5(C)

A Time-Space Trade-Off for Bounded Wildcard Indexes

Analysing the Space Usage

X

[—1

n strings <nlogsn < nloglg n
Each string in T(C) gives rise to at most lightdepth(x) < log, n strings
on the next level. So the number of strings in a k-level index is at most

anogﬁn = nlogﬁ n.

By using the LCP data structure to support LCP queries on every subtrie,
we obtain a k-bounded wildcard index with query time
O(m + ' loglogn + occ) using space O(n log’;_l(n) logn).

SOLUTION 3

A k-Bounded Wildcard Index
with Linear Query Time

Query Time: O(m +j + occ)
Space Usage: O(no*’ log* logn)

A k-Bounded Wildcard Index with Linear Query Time
General Idea
Consider the previously described unbounded wildcard index A with
» linear space usage, and
» query time O(m + o/ loglogn + occ).
Suppose the pattern is restricted to contain a maximum of k wildcards.
» If m+j > ofloglogn > o/ loglogn, (i.e., the query pattern is long)
the query time becomes linear: O(m + j + occ).
» If m +j < oFloglogn, we query a special wildcard index B for
short patterns with query time O(m + j + occ).

In any case the query time is O(m + j + occ). The space used by the
index is O(|A| + |B]).

A k-Bounded Wildcard Index with Linear Query Time

A Special Index for Patterns Shorter than o* loglogn

G = o*loglogn

T(C) k

T?(pref,(C)) contains at most n strings. Consider a string x in one of the
subtries. At most |x| < G suffixes of x appear in tries on the next level.
Consequently, the number of strings in TX(pref,;(C)) is bounded by

ZnGl = (c*loglogn)¥) = O(na’<2 log"logn) .

Result: A k-bounded wildcard index with linear query time
O(m + j + occ) using space O(nok2 logk logn).

Conclusions

» Three new solutions for string indexing for patterns with
wildcards:

» The fastest linear space index.
» A trade-off for k-bounded wildcard indexes.
» The first non-trivial linear time index.
» All solutions generalize to string indexing for patterns with
variable length gaps.

Conclusions

» Three new solutions for string indexing for patterns with
wildcards:

» The fastest linear space index.
» A trade-off for k-bounded wildcard indexes.
» The first non-trivial linear time index.
» All solutions generalize to string indexing for patterns with
variable length gaps.

Thank you!

