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String Indexing for Patterns with Wildcards

Problem Definition

Build an index for a string t € ¥*, that, given a query pattern p, quickly
can report where p occurs in t.

p:po *Pl X ... *p]
Example

t = combinatorialpatternmatching

p=xat x *x xn
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Two Simple Solutions
Suffix Tree Search
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Two Simple Solutions

Suffix Tree Search
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Two Simple Solutions
Suffix Tree Search

P = *nax

1234567

t= bananas
k] %
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Time: O(o/m + occ)
Space: O(n)



Two Simple Solutions

Simple Linear Time Index
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Two Simple Solutions

Simple Linear Time Index
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Two Simple Solutions

Simple Linear Time Index
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Two Simple Solutions

Simple Linear Time Index
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Simple Linear Time Index
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D = *nax

% \ommés

\oﬁmﬁgs
bmw%
o O

bananas$—O—

wm%/oné



Two Simple Solutions

Simple Linear Time Index
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The Longest Common Prefix Data Structure !
LCP Queries

Let C; be a set of substrings of the indexed string. Consider the
following query on the compressed trie T(C;) storing the strings in C;.

LCP(x, 1, ¢): The location where the search for x € ¥* stops when
starting in location ¢ € T(C;).

Example: x = angry and C; = suff(bananas).

ff x \O

LCP K
(x b \b’

7{‘"& A

T(C)

1 R. Cole, L. Gottlieb, and M. Lewenstein.

Dictionary matching and indexing with errors and don’t cares. Proc. 36th STOC, 2004.



The Longest Common Prefix Data Structure !
An Application
Search for subpatterns in the suffix tree using the LCP data structure:
» Build the LCP data structure for the suffix tree.

» Search with a query pattern containing wildcards:

» Search for complete subpatterns using LCP queries.
» Branch on a wildcard as in the simple suffix tree solution.
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The Longest Common Prefix Data Structure !

An Application
Search for subpatterns in the suffix tree using the LCP data structure:
» Build the LCP data structure for the suffix tree.
» Search with a query pattern containing wildcards:

» Search for complete subpatterns using LCP queries.
» Branch on a wildcard as in the simple suffix tree solution.

How fast can you answer an LCP query?

» O(loglogn) time and O(nlogn) space.

= Index with query time O(m + ¢’ loglogn + occ) and space O(nlogn).

» We show that you can also do O(logn) time and O(n) space.
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The Longest Common Prefix Data Structure !
An Application
Search for subpatterns in the suffix tree using the LCP data structure:
» Build the LCP data structure for the suffix tree.

» Search with a query pattern containing wildcards:

» Search for complete subpatterns using LCP queries.
» Branch on a wildcard as in the simple suffix tree solution.

How fast can you answer an LCP query?

» We show that you can also do O(logn) time and QO(n) space.

= Index with query time O(m + o’ logn + occ) and(space O(n)).

R. Cole, L. Gottlieb, and M. Lewenstein.
Dictionary matching and indexing with errors and don’t cares. Proc. 36th STOC, 2004.
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SOLUTION 1

An Unbounded Wildcard Index
Using Linear Space

Query Time:  O(m + o’ loglogn + occ)
Space Usage: O(n)



An Unbounded Wildcard Index Using Linear Space
ART Decomposition 2
Definition:
» A bottom tree is a maximal subtree with at most logn leaves.
» Vertices not in a bottom tree constitute the top tree.
Example: A tree with n = 16 leaves (logn = 4).

ZS, Alstrup, T. Husfeldt, and T. Rauhe
Marked ancestor problems. Proc. 39th FOCS, 1998.
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An Unbounded Wildcard Index Using Linear Space

ART Decomposition 2
Definition:
» A bottom tree is a maximal subtree with at most logn leaves.
» Vertices not in a bottom tree constitute the top tree.
Example: A tree with n = 16 leaves (logn = 4).

B3

By

Bs Bg By
B

Bg Bo

By
Property: The top tree has O(lo’;n) leaves.

ZS, Alstrup, T. Husfeldt, and T. Rauhe
Marked ancestor problems. Proc. 39th FOCS, 1998.



An Unbounded Wildcard Index Using Linear Space

Obtaining the Index

» Use the ART decomposition to decompose the suffix tree into a
number of logarithmic sized bottom trees and a single top tree
containing O(-%-) leaves.

logn
» Store the top and bottom trees in LCP data structure.

» On the top tree T’: Add support for O(loglogn) time LCP queries
using the method by Cole et al. 3

> This requires space O(|T’[10g |T") = O(j557 108(1557)) = O(n).
» On the bottom trees T(C,), ..., T(Cy): Add support for O(logn)
time LCP queries using our new method.
» This requires O(}_7_, |Ci|) = O(n) space.
» The query time becomes O(log |Ci|) = O(loglogn).
This gives an unbounded wildcard index using O(n) space with query
time O(m + ¢’ loglogn + occ).

3R, Cole, L. Gottlieb, and M. Lewenstein.

Dictionary matching and indexing with errors and don’t cares. Proc. 36th STOC, 2004.
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SOLUTION 2

A Time-Space Trade-Off
for k-Bounded Wildcard Indexes

Query Time:  O(m + §' loglogn + occ)
Space Usage:  O(nlogl ' (n) logn)



A Time-Space Trade-Off for Bounded Wildcard Indexes

General Idea

Reduce the branching factor of the suffix tree search from o to 8 by
creating wildcard trees. Query time: O(m + (# loglogn + occ) when
using the LCP data structure.
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A Time-Space Trade-Off for Bounded Wildcard Indexes

Analysing the Space Usage

X

[ —1

n strings <nlogsn < nloglg n
Each string in T(C) gives rise to at most lightdepth(x) < log, n strings
on the next level. So the number of strings in a k-level index is at most

anogﬁn = nlogﬁ n.

By using the LCP data structure to support LCP queries on every subtrie,
we obtain a k-bounded wildcard index with query time
O(m + ' loglogn + occ) using space O(n log’;_l(n) logn).



SOLUTION 3

A k-Bounded Wildcard Index
with Linear Query Time

Query Time:  O(m +j + occ)
Space Usage:  O(no*’ log* logn)



A k-Bounded Wildcard Index with Linear Query Time
General Idea
Consider the previously described unbounded wildcard index A with
» linear space usage, and
» query time O(m + o/ loglogn + occ).
Suppose the pattern is restricted to contain a maximum of k wildcards.
» If m+j > ofloglogn > o/ loglogn, (i.e., the query pattern is long)
the query time becomes linear: O(m + j + occ).
» If m +j < oFloglogn, we query a special wildcard index B for
short patterns with query time O(m + j + occ).

In any case the query time is O(m + j + occ). The space used by the
index is O(|A| + |B]).



A k-Bounded Wildcard Index with Linear Query Time

A Special Index for Patterns Shorter than o* loglogn

G = o*loglogn

T(C) k

T?(pref,(C)) contains at most n strings. Consider a string x in one of the
subtries. At most |x| < G suffixes of x appear in tries on the next level.
Consequently, the number of strings in TX(pref,;(C)) is bounded by

ZnGl = (c*loglogn)¥) = O(na’<2 log"logn) .

Result: A k-bounded wildcard index with linear query time
O(m + j + occ) using space O(nok2 logk logn).



Conclusions

» Three new solutions for string indexing for patterns with
wildcards:

» The fastest linear space index.
» A trade-off for k-bounded wildcard indexes.
» The first non-trivial linear time index.
» All solutions generalize to string indexing for patterns with
variable length gaps.
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