String Indexing for Patterns with Wildcards

Philip Bille¹, Inge Li Gørtz¹, Hjalte Wedel Vildhøj¹, and Søren Vind¹

¹Technical University of Denmark, DTU Informatics

SWAT 2012, Helsinki July 6, 2012

String Indexing for Patterns with Wildcards

Problem Definition

Build an index for a string $t \in \Sigma^*$, that, given a query pattern p, quickly can report where p occurs in t.

$$p = p_0 * p_1 * \ldots * p_j$$

Example

$$t = combinatorial pattern matching$$

 $p = * at * * * n$

The Longest Common Prefix Data Structure ¹

Let C_i be a set of substrings of the indexed string. Consider the following query on the compressed trie $T(C_i)$ storing the strings in C_i .

 $LCP(x, i, \ell)$: The location where the search for $x \in \Sigma^*$ stops when starting in location $\ell \in T(C_i)$.

Example: $x = \text{angry and } C_i = \text{suff}(\text{bananas}).$

¹ R. Cole, L. Gottlieb, and M. Lewenstein. Dictionary matching and indexing with errors and don't cares. Proc. 36th STOC, 2004.

The Longest Common Prefix Data Structure ¹ An Application

Search for subpatterns in the suffix tree using the LCP data structure:

- ▶ Build the LCP data structure for the suffix tree.
- ▶ Search with a query pattern containing wildcards:
 - Search for complete subpatterns using LCP queries.
 - ▶ Branch on a wildcard as in the simple suffix tree solution.

¹ R. Cole, L. Gottlieb, and M. Lewenstein. Dictionary matching and indexing with errors and don't cares. Proc. 36th STOC, 2004.

The Longest Common Prefix Data Structure ¹

Search for subpatterns in the suffix tree using the LCP data structure:

- ▶ Build the LCP data structure for the suffix tree.
- ► Search with a query pattern containing wildcards:
 - Search for complete subpatterns using LCP queries.
 - Branch on a wildcard as in the simple suffix tree solution.

How fast can you answer an LCP query?

An Application

- ▶ $O(\log \log n)$ time and $O(n \log n)$ space.
 - ⇒ Index with query time $O(m + \sigma^j \log \log n + occ)$ and space $O(n \log n)$.
- ▶ We show that you can also do $O(\log n)$ time and O(n) space.
 - \Rightarrow Index with query time $O(m + \sigma^j \log n + occ)$ and space O(n).

¹ R. Cole, L. Gottlieb, and M. Lewenstein. Dictionary matching and indexing with errors and don't cares. Proc. 36th STOC, 2004.

The Longest Common Prefix Data Structure ¹

An Application

Search for subpatterns in the suffix tree using the LCP data structure:

- ▶ Build the LCP data structure for the suffix tree.
- ▶ Search with a query pattern containing wildcards:
 - Search for complete subpatterns using LCP queries.
 - Branch on a wildcard as in the simple suffix tree solution.

How fast can you answer an LCP query?

- ▶ $O(\log \log n)$ time and $O(n \log n)$ space.
 - \Rightarrow Index with query time $O(m + \sigma^j \log \log n + occ)$ and space $O(n \log n)$.
- ▶ We show that you can also do $O(\log n)$ time and O(n) space.
 - \Rightarrow Index with query time $O(m + \sigma^j \log n + occ)$ and (space O(n)).

¹ R. Cole, L. Gottlieb, and M. Lewenstein. Dictionary matching and indexing with errors and don't cares. Proc. 36th STOC, 2004.

Query Time: $O(m + \sigma^j \log \log n + occ)$

Space Usage: O(n)

ART Decomposition ²

Definition:

- A bottom tree is a maximal subtree with at most $\log n$ leaves.
- ▶ Vertices not in a bottom tree constitute the *top tree*.

Example: A tree with n = 16 leaves ($\log n = 4$).

²S. Alstrup, T. Husfeldt, and T. Rauhe Marked ancestor problems. Proc. 39th FOCS, 1998.

ART Decomposition 2

Definition:

- A bottom tree is a maximal subtree with at most $\log n$ leaves.
- ▶ Vertices not in a bottom tree constitute the *top tree*.

Example: A tree with n = 16 leaves ($\log n = 4$).

²S. Alstrup, T. Husfeldt, and T. Rauhe Marked ancestor problems. Proc. 39th FOCS, 1998.

ART Decomposition 2

Definition:

- A bottom tree is a maximal subtree with at most $\log n$ leaves.
- ▶ Vertices not in a bottom tree constitute the *top tree*.

Example: A tree with n = 16 leaves ($\log n = 4$).

²S. Alstrup, T. Husfeldt, and T. Rauhe Marked ancestor problems. Proc. 39th FOCS, 1998.

ART Decomposition ²

Definition:

- ightharpoonup A bottom tree is a maximal subtree with at most $\log n$ leaves.
- ▶ Vertices not in a bottom tree constitute the *top tree*.

Example: A tree with n = 16 leaves ($\log n = 4$).

Property: The top tree has $O(\frac{n}{\log n})$ leaves.

²S. Alstrup, T. Husfeldt, and T. Rauhe Marked ancestor problems. Proc. 39th FOCS, 1998.

Obtaining the Index

- ▶ Use the ART decomposition to decompose the suffix tree into a number of logarithmic sized bottom trees and a single top tree containing $O(\frac{n}{\log n})$ leaves.
- Store the top and bottom trees in LCP data structure.
- ▶ On the top tree T': Add support for $O(\log \log n)$ time LCP queries using the method by Cole et al. ³
 - ► This requires space $O(|T'|\log|T'|) = O(\frac{n}{\log n}\log(\frac{n}{\log n})) = O(n)$.
- ▶ On the bottom trees $T(C_1), \ldots, T(C_q)$: Add support for $O(\log n)$ time LCP queries using our new method.
 - ► This requires $O(\sum_{i=1}^{q} |C_i|) = O(n)$ space.
 - ► The query time becomes $O(\log |C_i|) = O(\log \log n)$.

This gives an unbounded wildcard index using O(n) space with query time $O(m + \sigma^j \log \log n + occ)$.

³R. Cole, L. Gottlieb, and M. Lewenstein. Dictionary matching and indexing with errors and don't cares. Proc. 36th STOC, 2004.

SOLUTION 2 A Time-Space Trade-Off

for k-Bounded Wildcard Indexes

Query Time: $O(m + \beta^j \log \log n + occ)$

Space Usage: $O(n \log_{\beta}^{k-1}(n) \log n)$

General Idea

General Idea

General Idea

General Idea

Each string in T(C) gives rise to at most lightdepth(x) $\leq \log_{\beta} n$ strings on the next level. So the number of strings in a k-level index is at most

$$\sum_{i=0}^k n \log_\beta^i n = O(n \log_\beta^k n) .$$

By using the LCP data structure to support LCP queries on every subtrie, we obtain a k-bounded wildcard index with query time $O(m + \beta^j \log \log n + occ)$ using space $O(n \log_{\beta}^{k-1}(n) \log n)$.

SOLUTION 3 A k-Bounded Wildcard Index with Linear Query Time

Query Time: O(m + j + occ)Space Usage: $O(n\sigma^{k^2} \log^k \log n)$

A *k*-Bounded Wildcard Index with Linear Query Time

Consider the previously described unbounded wildcard index A with

linear space usage, and

General Idea

• query time $O(m + \sigma^j \log \log n + occ)$.

Suppose the pattern is restricted to contain a maximum of k wildcards.

- ▶ If $m + j > \sigma^k \log \log n > \sigma^j \log \log n$, (i.e., the query pattern is long) the query time becomes linear: O(m + j + occ).
- ▶ If $m + j \le \sigma^k \log \log n$, we query a special wildcard index \mathcal{B} for short patterns with query time O(m + j + occ).

In any case the query time is O(m+j+occ). The space used by the index is $O(|\mathcal{A}|+|\mathcal{B}|)$.

A k-Bounded Wildcard Index with Linear Query Time

A Special Index for Patterns Shorter than $\sigma^k \log \log n$

 $T_1^0(\operatorname{pref}_G(C))$ contains at most n strings. Consider a string x in one of the subtries. At most $|x| \leq G$ suffixes of x appear in tries on the next level. Consequently, the number of strings in $T_1^k(\operatorname{pref}_G(C))$ is bounded by

$$\sum_{i=0}^k nG^i = O(n(\sigma^k \log \log n)^k) = O(n\sigma^{k^2} \log^k \log n).$$

Result: A *k*-bounded wildcard index with linear query time O(m+j+occ) using space $O(n\sigma^{k^2}\log^k\log n)$.

Conclusions

- Three new solutions for string indexing for patterns with wildcards:
 - ► The fastest linear space index.
 - ▶ A trade-off for *k*-bounded wildcard indexes.
 - ► The first non-trivial linear time index.
- ► All solutions generalize to string indexing for patterns with variable length gaps.

Conclusions

- ► Three new solutions for string indexing for patterns with wildcards:
 - ► The fastest linear space index.
 - ▶ A trade-off for *k*-bounded wildcard indexes.
 - ► The first non-trivial linear time index.
- All solutions generalize to string indexing for patterns with variable length gaps.

Thank you!