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The Longest Common Extension Problem
Definition

Problem: Preprocess a string T of length n to support LCE queries:
I LCE(i, j) = The length of the longest common prefix of the suffixes

starting at position i and j in T.
Example

T = b a n a n a s LCE(2,4) = ?

a n a n a s

1 2 3 4 5 6 7

I We assume that the input is given in read-only memory and is not
included in the space complexity.
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Definition

Problem: Preprocess a string T of length n to support LCE queries:
I LCE(i, j) = The length of the longest common prefix of the suffixes

starting at position i and j in T.
Example

T = b a n a n a s LCE(2,4) = 3

a n a n a s

a n a s

1 2 3 4 5 6 7

I We assume that the input is given in read-only memory and is not
included in the space complexity.
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The Longest Common Extension Problem
Definition

Problem: Preprocess a string T of length n to support LCE queries:
I LCE(i, j) = The length of the longest common prefix of the suffixes

starting at position i and j in T.
Example

T = b a n a n a s LCE(2,5) = 0

a n a n a s

n a s

1 2 3 4 5 6 7

I We assume that the input is given in read-only memory and is not
included in the space complexity.
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Definition
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Two Simple Solutions

#1: Store nothing

T = b a n a n a s

i j

LCE(i, j) =
1 2 3 4 5 6 7
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Two Simple Solutions

#1: Store nothing

T = b a n a n a s

i j

LCE(i, j) = 3
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Two Simple Solutions

#1: Store nothing

T = b a n a n a s

i j Time: O(n)
Space: O(1)

LCE(i, j) = 3
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Two Simple Solutions

#1: Store nothing

T = b a n a n a s

i j Time: O(n)
Space: O(1)

LCE(i, j) = 3
1 2 3 4 5 6 7

#2: Store the suffix tree

NCA(2, 4)
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LCE(i, j) = |NCA(i, j)| = 3
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LCE(i, j) = |NCA(i, j)| = 3

Trade-off?
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Our Results
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Our Results

Time: O (n)
Space: O (1)

Time: O
(
τ log

(
LCE(i,j)
τ

))
Space: O

( n
τ

)
Time: O (τ)

Space: O
(

n√
τ

)
Time: O (1)
Space: O (n)

Trade-off?

Le
ss

sp
ac

e

Fa
st

er

Randomized

Deterministic

Store nothing

Store suffix tree

Trade-off parameter τ , 1 ≤ τ ≤ n

17 / 56



A Deterministic Solution
Idea: Store a subset of the n suffixes in a compacted trie.

T = d b c a a b c a b c a a b c a c
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
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A Deterministic Solution
Idea: Store a subset of the n suffixes in a compacted trie.

T = d b c a a b c a b c a a b c a c
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Difference Covers
A difference cover modulo τ is a set of integers D ⊆ {0,1, . . . , τ − 1}
such that for any distance d ∈ {0,1, . . . , τ − 1}, D contains two
elements separated by distance d modulo τ .
Ex: The set D = {1,2,4} is a difference cover modulo 5.
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A Deterministic Solution
Idea: Store a subset of the n suffixes in a compacted trie.

T = d b c a a b c a b c a a b c a c
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

D D D D

Lemma (Colbourn and Ling1)
For any τ , a difference cover modulo τ of size at most

√
1.5τ + 6 can be

computed in O(
√
τ) time.

Analysis
Time: O(τ)

Space: O(#stored suffixes) = O
( n
τ |D|

)
= O

(
n√
τ

)

1C. J. Colbourn and A. C. Ling. Quorums from difference covers. Inf. Process. Lett.
75(1-2):9–12, 2000
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A Randomized Solution (Monte Carlo)

Rabin-Karp Fingerprints
Let p be a sufficiently large prime and choose b ∈ Zp uniformly at
random.

φ(S) =
|S|∑

k=1

S[k]bk mod p .

T = d b c a a b c a b c a a b c a c

= 3 1 2 0 0 1 2 0 1 2 0 0 1 2 0 2

φ(T[2 . . . 7]) = 1b1 + 2b2 + 0b3 + 0b4 + 1b5 + 2b6 mod p

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Crucial property: With high probability φ is collision-free on
substrings of T, i.e., φ(S1) = φ(S2) iff S1 = S2.

Also important: φ(T[i . . . j + 1]) can be computed from φ(T[i . . . j]) in
O(1) time.
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A Randomized Solution (Monte Carlo)
How to answer a query

Idea: Store fingerprints of suffixes starting at every τ ’th position in T.

T =

Blocks of τ chars

i j
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Blocks of τ chars
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φ
′′

φ
′

i j

Observation: If S is block aligned we can compute φ(S) in O(1) time.
Otherwise, the time needed is O(τ).
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A Randomized Solution (Monte Carlo)
How to answer a query

Idea: Store fingerprints of suffixes starting at every τ ’th position in T.

T =

Blocks of τ chars

i j

X X
X X
X X
X X
× ×
X X
× ×
X X

Analysis
Time: Only O(log( LCE

τ )) fingerprint comparisons each taking time O(τ).
Hence query time O

(
τ log

( LCE
τ

))
.

Space: O
( n
τ

)
.
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A Randomized Solution (Las Vegas)
Question: Can we verify that φ is collision free during preprocessing?
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Question: Can we verify that φ is collision free during preprocessing?

Challenge: Doing this quickly while using O( n
τ ) space.

Observation: Whenever we compare two fingerprints, we can ensure
that one of them is of the form T[jτ . . . jτ + τ · 2` − 1] for some `, j
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Conclusions

We gave three time-space trade-offs for LCE on a single string:

I A deterministic solution
I O(τ) query time
I O(n/

√
τ) space (even during preprocessing)

I O(n2/
√
τ) preprocessing time

I A Monte-Carlo solution
I O (τ log (LCE(i, j)/τ)) query time (correct with high prob.)
I O(n/τ) space (even during preprocessing)
I O(n) preprocessing time.

I A Las-Vegas solution
I O (τ log (LCE(i, j)/τ)) query time (correct with certainty)
I O(n/τ) space (even during preprocessing)
I O(n log n) preprocessing time with high prob.
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Conclusions

We gave three time-space trade-offs for LCE on two strings:

I A deterministic solution
I O(τ) query time
I O(n/τ + m/

√
τ) space (even during preprocessing)

I O(nm/
√
τ) preprocessing time

I A Monte-Carlo solution
I O (τ log (LCE(i, j)/τ)) query time (correct with high prob.)
I O((n + m)/τ) space (even during preprocessing)
I O(n) preprocessing time.

I A Las-Vegas solution
I O (τ log (LCE(i, j)/τ)) query time (correct with certainty)
I O((n + m)/τ) space (even during preprocessing)
I O(n log n) preprocessing time with high prob.
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