
Time-Space Trade-Offs for
Longest Common Extensions

Philip Bille1, Inge Li Gørtz1, Benjamin Sach2, and Hjalte Wedel Vildhøj1

1Technical University of Denmark, DTU Informatics, {phbi,ilg,hwvi}@imm.dtu.dk
2University of Warwick, Department of Computer Science, sach@dcs.warwick.ac.uk

CPM 2012, Helsinki
July 4, 2012

1 / 56

The Longest Common Extension Problem
Definition

Problem: Preprocess a string T of length n to support LCE queries:
I LCE(i, j) = The length of the longest common prefix of the suffixes

starting at position i and j in T.
Example

T = b a n a n a s LCE(2,4) = ?

a n a n a s

1 2 3 4 5 6 7

I We assume that the input is given in read-only memory and is not
included in the space complexity.

2 / 56

The Longest Common Extension Problem
Definition

Problem: Preprocess a string T of length n to support LCE queries:
I LCE(i, j) = The length of the longest common prefix of the suffixes

starting at position i and j in T.
Example

T = b a n a n a s LCE(2,4) = ?

a n a n a s

a n a s

1 2 3 4 5 6 7

I We assume that the input is given in read-only memory and is not
included in the space complexity.

3 / 56

The Longest Common Extension Problem
Definition

Problem: Preprocess a string T of length n to support LCE queries:
I LCE(i, j) = The length of the longest common prefix of the suffixes

starting at position i and j in T.
Example

T = b a n a n a s LCE(2,4) = 3

a n a n a s

a n a s

1 2 3 4 5 6 7

I We assume that the input is given in read-only memory and is not
included in the space complexity.

4 / 56

The Longest Common Extension Problem
Definition

Problem: Preprocess a string T of length n to support LCE queries:
I LCE(i, j) = The length of the longest common prefix of the suffixes

starting at position i and j in T.
Example

T = b a n a n a s LCE(2,5) = 0

a n a n a s

n a s

1 2 3 4 5 6 7

I We assume that the input is given in read-only memory and is not
included in the space complexity.

5 / 56

The Longest Common Extension Problem
Definition

Problem: Preprocess a string T of length n to support LCE queries:
I LCE(i, j) = The length of the longest common prefix of the suffixes

starting at position i and j in T.
Example

T = b a n a n a s LCE(2,5) = 0

a n a n a s

n a s

1 2 3 4 5 6 7

I We assume that the input is given in read-only memory and is not
included in the space complexity.

6 / 56

Two Simple Solutions

#1: Store nothing

T = b a n a n a s

i j

LCE(i, j) =
1 2 3 4 5 6 7

#2: Store the suffix tree

2

n
a
s

4

s
n
a

6

s

a

1

b
a
n
a
n
a
s

3

n
a
s

5

s

na

7

s

7 / 56

Two Simple Solutions

#1: Store nothing

T = b a n a n a s

i j

LCE(i, j) = 1
1 2 3 4 5 6 7

#2: Store the suffix tree

2

n
a
s

4

s
n
a

6

s

a

1

b
a
n
a
n
a
s

3

n
a
s

5

s

na

7

s

8 / 56

Two Simple Solutions

#1: Store nothing

T = b a n a n a s

i j

LCE(i, j) = 2
1 2 3 4 5 6 7

#2: Store the suffix tree

2

n
a
s

4

s
n
a

6

s

a

1

b
a
n
a
n
a
s

3

n
a
s

5

s

na

7

s

9 / 56

Two Simple Solutions

#1: Store nothing

T = b a n a n a s

i j

LCE(i, j) = 3
1 2 3 4 5 6 7

#2: Store the suffix tree

2

n
a
s

4

s
n
a

6

s

a

1

b
a
n
a
n
a
s

3

n
a
s

5

s

na

7

s

10 / 56

Two Simple Solutions

#1: Store nothing

T = b a n a n a s

i j Time: O(n)
Space: O(1)

LCE(i, j) = 3
1 2 3 4 5 6 7

#2: Store the suffix tree

2

n
a
s

4

s
n
a

6

s

a

1

b
a
n
a
n
a
s

3

n
a
s

5

s

na

7

s

11 / 56

Two Simple Solutions

#1: Store nothing

T = b a n a n a s

i j Time: O(n)
Space: O(1)

LCE(i, j) = 3
1 2 3 4 5 6 7

#2: Store the suffix tree

2

n
a
s

4

s
n
a

6

s

a

1

b
a
n
a
n
a
s

3

n
a
s

5

s

na

7

s

12 / 56

Two Simple Solutions

#1: Store nothing

T = b a n a n a s

i j Time: O(n)
Space: O(1)

LCE(i, j) = 3
1 2 3 4 5 6 7

#2: Store the suffix tree

NCA(2, 4)

2

n
a
s

4

s
n
a

6

s

a

1

b
a
n
a
n
a
s

3

n
a
s

5

s

na

7

s

LCE(i, j) = |NCA(i, j)| = 3

13 / 56

Two Simple Solutions

#1: Store nothing

T = b a n a n a s

i j Time: O(n)
Space: O(1)

LCE(i, j) = 3
1 2 3 4 5 6 7

#2: Store the suffix tree

NCA(2, 4)

2

n
a
s

4

s
n
a

6

s

a

1

b
a
n
a
n
a
s

3

n
a
s

5

s

na

7

s

Time: O(1)
Space: O(n)

LCE(i, j) = |NCA(i, j)| = 3

14 / 56

Two Simple Solutions

#1: Store nothing

T = b a n a n a s

i j Time: O(n)
Space: O(1)

LCE(i, j) = 3
1 2 3 4 5 6 7

#2: Store the suffix tree

NCA(2, 4)

2

n
a
s

4

s
n
a

6

s

a

1

b
a
n
a
n
a
s

3

n
a
s

5

s

na

7

s

Time: O(1)
Space: O(n)

LCE(i, j) = |NCA(i, j)| = 3

Trade-off?

15 / 56

Our Results

Time: O (n)
Space: O (1)

Time: O (1)
Space: O (n)

Trade-off?

Le
ss

sp
ac

e

Fa
st

er

Store nothing

Store suffix tree

16 / 56

Our Results

Time: O (n)
Space: O (1)

Time: O
(
τ log

(
LCE(i,j)
τ

))
Space: O

(n
τ

)
Time: O (τ)

Space: O
(

n√
τ

)
Time: O (1)
Space: O (n)

Trade-off?

Le
ss

sp
ac

e

Fa
st

er

Randomized

Deterministic

Store nothing

Store suffix tree

Trade-off parameter τ , 1 ≤ τ ≤ n

17 / 56

A Deterministic Solution
Idea: Store a subset of the n suffixes in a compacted trie.

T = d b c a a b c a b c a a b c a c
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

18 / 56

A Deterministic Solution
Idea: Store a subset of the n suffixes in a compacted trie.

T = d b c a a b c a b c a a b c a c
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

i j

19 / 56

A Deterministic Solution
Idea: Store a subset of the n suffixes in a compacted trie.

T = d b c a a b c a b c a a b c a c
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

i j

20 / 56

A Deterministic Solution
Idea: Store a subset of the n suffixes in a compacted trie.

T = d b c a a b c a b c a a b c a c
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

i j

21 / 56

A Deterministic Solution
Idea: Store a subset of the n suffixes in a compacted trie.

T = d b c a a b c a b c a a b c a c
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

i j

22 / 56

A Deterministic Solution
Idea: Store a subset of the n suffixes in a compacted trie.

T = d b c a a b c a b c a a b c a c
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

i j

23 / 56

A Deterministic Solution
Idea: Store a subset of the n suffixes in a compacted trie.

T = d b c a a b c a b c a a b c a c
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

i j

24 / 56

A Deterministic Solution
Idea: Store a subset of the n suffixes in a compacted trie.

T = d b c a a b c a b c a a b c a c
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

i j

25 / 56

A Deterministic Solution
Idea: Store a subset of the n suffixes in a compacted trie.

T = d b c a a b c a b c a a b c a c
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Difference Covers
A difference cover modulo τ is a set of integers D ⊆ {0,1, . . . , τ − 1}
such that for any distance d ∈ {0,1, . . . , τ − 1}, D contains two
elements separated by distance d modulo τ .
Ex: The set D = {1,2,4} is a difference cover modulo 5.

d 0 1 2 3 4
i, j 1,1 2,1 1,4 4,1 1,2

1
2

4

0
3

1

4

23

26 / 56

A Deterministic Solution
Idea: Store a subset of the n suffixes in a compacted trie.

T = d b c a a b c a b c a a b c a c
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

D D D D

Difference Covers
A difference cover modulo τ is a set of integers D ⊆ {0,1, . . . , τ − 1}
such that for any distance d ∈ {0,1, . . . , τ − 1}, D contains two
elements separated by distance d modulo τ .
Ex: The set D = {1,2,4} is a difference cover modulo 5.

d 0 1 2 3 4
i, j 1,1 2,1 1,4 4,1 1,2

1
2

4

0
3

1

4

23

27 / 56

A Deterministic Solution
Idea: Store a subset of the n suffixes in a compacted trie.

T = d b c a a b c a b c a a b c a c
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

D D D D

Lemma (Colbourn and Ling1)
For any τ , a difference cover modulo τ of size at most

√
1.5τ + 6 can be

computed in O(
√
τ) time.

Analysis
Time: O(τ)

Space: O(#stored suffixes) = O
(n
τ |D|

)
= O

(
n√
τ

)

1C. J. Colbourn and A. C. Ling. Quorums from difference covers. Inf. Process. Lett.
75(1-2):9–12, 2000

28 / 56

A Randomized Solution (Monte Carlo)

Rabin-Karp Fingerprints
Let p be a sufficiently large prime and choose b ∈ Zp uniformly at
random.

φ(S) =
|S|∑

k=1

S[k]bk mod p .

T = d b c a a b c a b c a a b c a c

= 3 1 2 0 0 1 2 0 1 2 0 0 1 2 0 2

φ(T[2 . . . 7]) = 1b1 + 2b2 + 0b3 + 0b4 + 1b5 + 2b6 mod p

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Crucial property: With high probability φ is collision-free on
substrings of T, i.e., φ(S1) = φ(S2) iff S1 = S2.

Also important: φ(T[i . . . j + 1]) can be computed from φ(T[i . . . j]) in
O(1) time.

29 / 56

A Randomized Solution (Monte Carlo)

Rabin-Karp Fingerprints
Let p be a sufficiently large prime and choose b ∈ Zp uniformly at
random.

φ(S) =
|S|∑

k=1

S[k]bk mod p .

T = d b c a a b c a b c a a b c a c

= 3 1 2 0 0 1 2 0 1 2 0 0 1 2 0 2

φ(T[2 . . . 7]) = 1b1 + 2b2 + 0b3 + 0b4 + 1b5 + 2b6 mod p

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Crucial property: With high probability φ is collision-free on
substrings of T, i.e., φ(S1) = φ(S2) iff S1 = S2.

Also important: φ(T[i . . . j + 1]) can be computed from φ(T[i . . . j]) in
O(1) time.

30 / 56

A Randomized Solution (Monte Carlo)

Rabin-Karp Fingerprints
Let p be a sufficiently large prime and choose b ∈ Zp uniformly at
random.

φ(S) =
|S|∑

k=1

S[k]bk mod p .

T = d b c a a b c a b c a a b c a c

= 3 1 2 0 0 1 2 0 1 2 0 0 1 2 0 2

φ(T[2 . . . 7]) = 1b1 + 2b2 + 0b3 + 0b4 + 1b5 + 2b6 mod p

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Crucial property: With high probability φ is collision-free on
substrings of T, i.e., φ(S1) = φ(S2) iff S1 = S2.

Also important: φ(T[i . . . j + 1]) can be computed from φ(T[i . . . j]) in
O(1) time.

31 / 56

A Randomized Solution (Monte Carlo)

Rabin-Karp Fingerprints
Let p be a sufficiently large prime and choose b ∈ Zp uniformly at
random.

φ(S) =
|S|∑

k=1

S[k]bk mod p .

T = d b c a a b c a b c a a b c a c

= 3 1 2 0 0 1 2 0 1 2 0 0 1 2 0 2

φ(T[2 . . . 7]) = 1b1 + 2b2 + 0b3 + 0b4 + 1b5 + 2b6 mod p

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Crucial property: With high probability φ is collision-free on
substrings of T, i.e., φ(S1) = φ(S2) iff S1 = S2.

Also important: φ(T[i . . . j + 1]) can be computed from φ(T[i . . . j]) in
O(1) time.

32 / 56

A Randomized Solution (Monte Carlo)
How to answer a query

Idea: Store fingerprints of suffixes starting at every τ ’th position in T.

T =

Blocks of τ chars

i j

33 / 56

A Randomized Solution (Monte Carlo)
How to answer a query

Idea: Store fingerprints of suffixes starting at every τ ’th position in T.

T =

Blocks of τ chars

S

φ
′′

φ
′

i j

Observation: If S is block aligned we can compute φ(S) in O(1) time.
Otherwise, the time needed is O(τ).

34 / 56

A Randomized Solution (Monte Carlo)
How to answer a query

Idea: Store fingerprints of suffixes starting at every τ ’th position in T.

T =

Blocks of τ chars

S

φ
′′

φ
′

i j

Observation: If S is block aligned we can compute φ(S) in O(1) time.
Otherwise, the time needed is O(τ).

35 / 56

A Randomized Solution (Monte Carlo)
How to answer a query

Idea: Store fingerprints of suffixes starting at every τ ’th position in T.

T =

Blocks of τ chars

i j

36 / 56

A Randomized Solution (Monte Carlo)
How to answer a query

Idea: Store fingerprints of suffixes starting at every τ ’th position in T.

T =

Blocks of τ chars

i j

37 / 56

A Randomized Solution (Monte Carlo)
How to answer a query

Idea: Store fingerprints of suffixes starting at every τ ’th position in T.

T =

Blocks of τ chars

i j

X X

38 / 56

A Randomized Solution (Monte Carlo)
How to answer a query

Idea: Store fingerprints of suffixes starting at every τ ’th position in T.

T =

Blocks of τ chars

i j

X X
X X

39 / 56

A Randomized Solution (Monte Carlo)
How to answer a query

Idea: Store fingerprints of suffixes starting at every τ ’th position in T.

T =

Blocks of τ chars

i j

X X
X X
X X

40 / 56

A Randomized Solution (Monte Carlo)
How to answer a query

Idea: Store fingerprints of suffixes starting at every τ ’th position in T.

T =

Blocks of τ chars

i j

X X
X X
X X
X X

41 / 56

A Randomized Solution (Monte Carlo)
How to answer a query

Idea: Store fingerprints of suffixes starting at every τ ’th position in T.

T =

Blocks of τ chars

i j

X X
X X
X X
X X
× ×

42 / 56

A Randomized Solution (Monte Carlo)
How to answer a query

Idea: Store fingerprints of suffixes starting at every τ ’th position in T.

T =

Blocks of τ chars

i j

X X
X X
X X
X X
× ×
X X

43 / 56

A Randomized Solution (Monte Carlo)
How to answer a query

Idea: Store fingerprints of suffixes starting at every τ ’th position in T.

T =

Blocks of τ chars

i j

X X
X X
X X
X X
× ×
X X
× ×

44 / 56

A Randomized Solution (Monte Carlo)
How to answer a query

Idea: Store fingerprints of suffixes starting at every τ ’th position in T.

T =

Blocks of τ chars

i j

X X
X X
X X
X X
× ×
X X
× ×
X X

45 / 56

A Randomized Solution (Monte Carlo)
How to answer a query

Idea: Store fingerprints of suffixes starting at every τ ’th position in T.

T =

Blocks of τ chars

i j

X X
X X
X X
X X
× ×
X X
× ×
X X

Analysis
Time: Only O(log(LCE

τ)) fingerprint comparisons each taking time O(τ).
Hence query time O

(
τ log

(LCE
τ

))
.

Space: O
(n
τ

)
.

46 / 56

A Randomized Solution (Las Vegas)
Question: Can we verify that φ is collision free during preprocessing?

47 / 56

A Randomized Solution (Las Vegas)
Question: Can we verify that φ is collision free during preprocessing?

Challenge: Doing this quickly while using O(n
τ) space.

48 / 56

A Randomized Solution (Las Vegas)
Question: Can we verify that φ is collision free during preprocessing?

Challenge: Doing this quickly while using O(n
τ) space.

Observation: Whenever we compare two fingerprints, we can ensure
that one of them is of the form T[jτ . . . jτ + τ · 2` − 1] for some `, j

49 / 56

A Randomized Solution (Las Vegas)
Question: Can we verify that φ is collision free during preprocessing?

Challenge: Doing this quickly while using O(n
τ) space.

Observation: Whenever we compare two fingerprints, we can ensure
that one of them is of the form T[jτ . . . jτ + τ · 2` − 1] for some `, j

. . . this cuts down the number of fingerprints we need to check!

50 / 56

A Randomized Solution (Las Vegas)
Question: Can we verify that φ is collision free during preprocessing?

Challenge: Doing this quickly while using O(n
τ) space.

Observation: Whenever we compare two fingerprints, we can ensure
that one of them is of the form T[jτ . . . jτ + τ · 2` − 1] for some `, j

. . . this cuts down the number of fingerprints we need to check!

General idea: For each ` ≥ 0 in increasing order, check that for all i, j,

φ(T[i . . . i + τ ·2` − 1]) = φ(T[jτ . . . jτ + τ ·2` − 1])

iff T[i . . . i + τ ·2` − 1] = T[jτ . . . jτ + τ ·2` − 1]

T =

φ(T[i . . . i + τ · 2` − 1])
T =

51 / 56

A Randomized Solution (Las Vegas)
Question: Can we verify that φ is collision free during preprocessing?

Challenge: Doing this quickly while using O(n
τ) space.

Observation: Whenever we compare two fingerprints, we can ensure
that one of them is of the form T[jτ . . . jτ + τ · 2` − 1] for some `, j

. . . this cuts down the number of fingerprints we need to check!

General idea: For each ` ≥ 0 in increasing order, check that for all i, j,

φ(T[i . . . i + τ ·2` − 1]) = φ(T[jτ . . . jτ + τ ·2` − 1])

iff T[i . . . i + τ ·2` − 1] = T[jτ . . . jτ + τ ·2` − 1]

T =

φ(T[i . . . i + τ · 2` − 1]) = φ(T[jτ . . . jτ + τ · 2` − 1])
T =

52 / 56

A Randomized Solution (Las Vegas)
Question: Can we verify that φ is collision free during preprocessing?

Challenge: Doing this quickly while using O(n
τ) space.

Observation: Whenever we compare two fingerprints, we can ensure
that one of them is of the form T[jτ . . . jτ + τ · 2` − 1] for some `, j

. . . this cuts down the number of fingerprints we need to check!

General idea: For each ` ≥ 0 in increasing order, check that for all i, j,

φ(T[i . . . i + τ ·2` − 1]) = φ(T[jτ . . . jτ + τ ·2` − 1])

iff T[i . . . i + τ ·2` − 1] = T[jτ . . . jτ + τ ·2` − 1]

T =

φ(T[i . . . i + τ · 2` − 1]) = φ(T[jτ . . . jτ + τ · 2` − 1])

φ(T[i . . . i + τ · 2`−1 − 1]) ?
= φ(T[jτ . . . jτ + τ · 2`−1 − 1])

T =

53 / 56

A Randomized Solution (Las Vegas)
Question: Can we verify that φ is collision free during preprocessing?

Challenge: Doing this quickly while using O(n
τ) space.

Observation: Whenever we compare two fingerprints, we can ensure
that one of them is of the form T[jτ . . . jτ + τ · 2` − 1] for some `, j

. . . this cuts down the number of fingerprints we need to check!

General idea: For each ` ≥ 0 in increasing order, check that for all i, j,

φ(T[i . . . i + τ ·2` − 1]) = φ(T[jτ . . . jτ + τ ·2` − 1])

iff T[i . . . i + τ ·2` − 1] = T[jτ . . . jτ + τ ·2` − 1]

T =

φ(T[i . . . i + τ · 2` − 1]) = φ(T[jτ . . . jτ + τ · 2` − 1])

φ(T[i + τ · 2`−1 . . . i + τ · 2` − 1])
?
= φ(T[jτ + τ · 2`−1 . . . jτ + τ · 2` − 1])

T =

54 / 56

Conclusions

We gave three time-space trade-offs for LCE on a single string:

I A deterministic solution
I O(τ) query time
I O(n/

√
τ) space (even during preprocessing)

I O(n2/
√
τ) preprocessing time

I A Monte-Carlo solution
I O (τ log (LCE(i, j)/τ)) query time (correct with high prob.)
I O(n/τ) space (even during preprocessing)
I O(n) preprocessing time.

I A Las-Vegas solution
I O (τ log (LCE(i, j)/τ)) query time (correct with certainty)
I O(n/τ) space (even during preprocessing)
I O(n log n) preprocessing time with high prob.

55 / 56

Conclusions

We gave three time-space trade-offs for LCE on two strings:

I A deterministic solution
I O(τ) query time
I O(n/τ + m/

√
τ) space (even during preprocessing)

I O(nm/
√
τ) preprocessing time

I A Monte-Carlo solution
I O (τ log (LCE(i, j)/τ)) query time (correct with high prob.)
I O((n + m)/τ) space (even during preprocessing)
I O(n) preprocessing time.

I A Las-Vegas solution
I O (τ log (LCE(i, j)/τ)) query time (correct with certainty)
I O((n + m)/τ) space (even during preprocessing)
I O(n log n) preprocessing time with high prob.

56 / 56

