Time-Space Trade-Offs for Longest Common Extensions

Philip Bille ${ }^{1}$, Inge Li Gørtz ${ }^{1}$, Benjamin Sach ${ }^{2}$, and Hjalte Wedel Vildh $\varnothing j^{1}$

${ }^{1}$ Technical University of Denmark, DTU Informatics, \{phbi, ilg, hwvi\}@imm.dtu.dk
${ }^{2}$ University of Warwick, Department of Computer Science, sach@dcs.warwick.ac.uk

CPM 2012, Helsinki
July 4, 2012

The Longest Common Extension Problem

Definition
Problem: Preprocess a string T of length n to support LCE queries:

- LCE $(i, j)=$ The length of the longest common prefix of the suffixes starting at position i and j in T.
Example

$$
T=\begin{array}{cccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\mathrm{~b} & \mathrm{a} & \mathrm{n} & \mathrm{a} & \mathrm{n} & \mathrm{a} & \mathrm{~s}
\end{array} \quad \operatorname{LCE}(2,4)=?
$$

The Longest Common Extension Problem

Definition
Problem: Preprocess a string T of length n to support LCE queries:

- LCE $(i, j)=$ The length of the longest common prefix of the suffixes starting at position i and j in T.
Example

$$
\begin{aligned}
& \operatorname{LCE}(2,4)=?
\end{aligned}
$$

The Longest Common Extension Problem

Definition
Problem: Preprocess a string T of length n to support LCE queries:

- LCE $(i, j)=$ The length of the longest common prefix of the suffixes starting at position i and j in T.
Example

$$
\operatorname{LCE}(2,4)=3
$$

The Longest Common Extension Problem

Definition
Problem: Preprocess a string T of length n to support LCE queries:

- LCE $(i, j)=$ The length of the longest common prefix of the suffixes starting at position i and j in T.
Example

$$
\operatorname{LCE}(2,5)=0
$$

The Longest Common Extension Problem

Definition

Problem: Preprocess a string T of length n to support LCE queries:

- LCE $(i, j)=$ The length of the longest common prefix of the suffixes starting at position i and j in T.

Example

$$
\begin{aligned}
& T=\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\mathrm{~b} & \mathrm{a} & \mathrm{n} & \mathrm{a} & \mathrm{n} & \mathrm{a} & \mathbf{s} & \operatorname{LCE}(2,5)=0
\end{array} \\
& \text { a } \mathrm{n} \text { a } \mathrm{n} \text { a } \mathrm{s}
\end{aligned}
$$

- We assume that the input is given in read-only memory and is not included in the space complexity.

Two Simple Solutions

\#1: Store nothing
$\operatorname{LCE}(i, j)=$

Two Simple Solutions

\#1: Store nothing

$$
\operatorname{LCE}(i, j)=1
$$

Two Simple Solutions

\#1: Store nothing

$$
\operatorname{LCE}(i, j)=2
$$

Two Simple Solutions

\#1: Store nothing

$$
\operatorname{LCE}(i, j)=3
$$

Two Simple Solutions

\#1: Store nothing

$$
\operatorname{LCE}(i, j)=3
$$

Time: $\quad O(n)$
Space: $\quad O(1)$

Two Simple Solutions

\#1: Store nothing
$\operatorname{LCE}(i, j)=3$
Time: $\quad O(n)$
Space: $\quad O(1)$
\#2: Store the suffix tree

Two Simple Solutions

\#1: Store nothing
$\operatorname{LCE}(i, j)=3$
Time: $\quad O(n)$ Space: $\quad O(1)$
\#2: Store the suffix tree

Two Simple Solutions

\#1: Store nothing
$\operatorname{LCE}(i, j)=3$
Time: $\quad O(n)$
Space: $\quad O(1)$
\#2: Store the suffix tree

Two Simple Solutions

\#1: Store nothing
$\operatorname{LCE}(i, j)=3$
Time: $\quad O(n)$
Space: $O(1)$
\#2: Store the suffix tree

Our Results

Store nothing

Store suffix tree

Our Results

$$
\text { Trade-off parameter } \tau, 1 \leq \tau \leq n
$$

Store nothing

Store suffix tree

A Deterministic Solution

Idea: Store a subset of the n suffixes in a compacted trie.

$$
T=\begin{array}{cccccccccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 \\
\mathrm{~d} & \mathrm{~b} & \mathrm{c} & \mathrm{a} & \mathrm{a} & \mathrm{~b} & \mathrm{c} & \mathrm{a} & \mathrm{~b} & \mathrm{c} & \mathrm{a} & \mathrm{a} & \mathrm{~b} & \mathrm{c} & \mathrm{a} & \mathrm{c}
\end{array}
$$

A Deterministic Solution

Idea: Store a subset of the n suffixes in a compacted trie.

$$
T=\begin{array}{cccccccccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 \\
\mathrm{~d} & \mathrm{~b} & \mathrm{c} & \mathrm{a} & \mathrm{a} & \mathrm{~b} & \mathrm{c} & \mathrm{a} & \mathrm{~b} & \mathrm{c} & \mathrm{a} & \mathrm{a} & \mathrm{~b} & \mathrm{c} & \mathrm{a} & \mathrm{c} \\
& & & \bullet & & \bullet & \bullet & & & \bullet & & & \bullet & \uparrow & & \\
& & & & & & & & & & & & & & & \\
& & & & & & & & & & & & & & &
\end{array}
$$

A Deterministic Solution

Idea: Store a subset of the n suffixes in a compacted trie.

A Deterministic Solution

Idea: Store a subset of the n suffixes in a compacted trie.

A Deterministic Solution

Idea: Store a subset of the n suffixes in a compacted trie.

A Deterministic Solution

Idea: Store a subset of the n suffixes in a compacted trie.

A Deterministic Solution

Idea: Store a subset of the n suffixes in a compacted trie.

A Deterministic Solution

Idea: Store a subset of the n suffixes in a compacted trie.

A Deterministic Solution

Idea: Store a subset of the n suffixes in a compacted trie.

$$
\mathrm{T}=\begin{array}{llllllllllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 \\
\mathrm{~d} & \mathrm{~b} & \mathrm{c} & \mathrm{a} & \mathrm{a} & \mathrm{~b} & \mathrm{c} & \mathrm{a} & \mathrm{~b} & \mathrm{c} & \mathrm{a} & \mathrm{a} & \mathrm{~b} & \mathrm{c} & \mathrm{a} & \mathrm{c}
\end{array}
$$

Difference Covers

A difference cover modulo τ is a set of integers $D \subseteq\{0,1, \ldots, \tau-1\}$ such that for any distance $d \in\{0,1, \ldots, \tau-1\}, D$ contains two elements separated by distance d modulo τ.
Ex: The set $D=\{1,2,4\}$ is a difference cover modulo 5 .

d	0	1	2	3	4
i, j	1,1	2,1	1,4	4,1	1,2

A Deterministic Solution

Idea: Store a subset of the n suffixes in a compacted trie.

Difference Covers

A difference cover modulo τ is a set of integers $D \subseteq\{0,1, \ldots, \tau-1\}$ such that for any distance $d \in\{0,1, \ldots, \tau-1\}, D$ contains two elements separated by distance d modulo τ.
Ex: The set $D=\{1,2,4\}$ is a difference cover modulo 5 .

d	0	1	2	3	4
i, j	1,1	2,1	1,4	4,1	1,2

A Deterministic Solution

Idea: Store a subset of the n suffixes in a compacted trie.

Lemma (Colbourn and Ling ${ }^{1}$)

For any τ, a difference cover modulo τ of size at most $\sqrt{1.5 \tau}+6$ can be computed in $O(\sqrt{\tau})$ time.

Analysis
Time: $O(\tau)$
Space: O (\#stored suffixes) $=O\left(\frac{n}{\tau}|D|\right)=O\left(\frac{n}{\sqrt{\tau}}\right)$

[^0]
A Randomized Solution (Monte Carlo)

Rabin-Karp Fingerprints
Let p be a sufficiently large prime and choose $b \in \mathbb{Z}_{p}$ uniformly at random.

$$
\begin{aligned}
& \phi(S)=\sum_{k=1}^{|S|} S[k] b^{k} \bmod p . \\
& T=\begin{array}{llllllllllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 \\
\mathrm{~d} & \mathrm{~b} & \mathrm{c} & \mathrm{a} & \mathrm{a} & \mathrm{~b} & \mathrm{c} & \mathrm{a} & \mathrm{~b} & \mathrm{c} & \mathrm{a} & \mathrm{a} & \mathrm{~b} & \mathrm{c} & \mathrm{a} & \mathrm{c}
\end{array}
\end{aligned}
$$

A Randomized Solution (Monte Carlo)

Rabin-Karp Fingerprints
Let p be a sufficiently large prime and choose $b \in \mathbb{Z}_{p}$ uniformly at random.

$$
\begin{aligned}
& \phi(S)=\sum_{k=1}^{|S|} S[k] b^{k} \bmod p . \\
& T=\begin{array}{llllllllllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 \\
\mathrm{~d} & \mathrm{~b} & \mathrm{c} & \mathrm{a} & \mathrm{a} & \mathrm{~b} & \mathrm{c} & \mathrm{a} & \mathrm{~b} & \mathrm{c} & \mathrm{a} & \mathrm{a} & \mathrm{~b} & \mathrm{c} & \mathrm{a} & \mathrm{c}
\end{array} \\
& =3 \underbrace{120012} 012001202 \\
& \phi(T[2 \ldots 7])=1 b^{1}+2 b^{2}+0 b^{3}+0 b^{4}+1 b^{5}+2 b^{6} \bmod p
\end{aligned}
$$

A Randomized Solution (Monte Carlo)

Rabin-Karp Fingerprints
Let p be a sufficiently large prime and choose $b \in \mathbb{Z}_{p}$ uniformly at random.

$$
\begin{aligned}
& \phi(S)=\sum_{k=1}^{|S|} S[k] b^{k} \bmod p . \\
& T=\begin{array}{llllllllllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 \\
\mathrm{~d} & \mathrm{~b} & \mathrm{c} & \mathrm{a} & \mathrm{a} & \mathrm{~b} & \mathrm{c} & \mathrm{a} & \mathrm{~b} & \mathrm{c} & \mathrm{a} & \mathrm{a} & \mathrm{~b} & \mathrm{c} & \mathrm{a} & \mathrm{c}
\end{array} \\
& =3 \underbrace{120012} 012001202 \\
& \phi(T[2 \ldots 7])=1 b^{1}+2 b^{2}+0 b^{3}+0 b^{4}+1 b^{5}+2 b^{6} \bmod p
\end{aligned}
$$

Crucial property: With high probability ϕ is collision-free on substrings of T, i.e., $\phi\left(S_{1}\right)=\phi\left(S_{2}\right)$ iff $S_{1}=S_{2}$.

A Randomized Solution (Monte Carlo)

Rabin-Karp Fingerprints
Let p be a sufficiently large prime and choose $b \in \mathbb{Z}_{p}$ uniformly at random.

$$
\begin{aligned}
& \phi(S)=\sum_{k=1}^{|S|} S[k] b^{k} \bmod p . \\
& T=\begin{array}{llllllllllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 \\
\mathrm{~d} & \mathrm{~b} & \mathrm{c} & \mathrm{a} & \mathrm{a} & \mathrm{~b} & \mathrm{c} & \mathrm{a} & \mathrm{~b} & \mathrm{c} & \mathrm{a} & \mathrm{a} & \mathrm{~b} & \mathrm{c} & \mathrm{a} & \mathrm{c}
\end{array} \\
& =3 \underbrace{120012} 012001202 \\
& \phi(T[2 \ldots 7])=1 b^{1}+2 b^{2}+0 b^{3}+0 b^{4}+1 b^{5}+2 b^{6} \bmod p
\end{aligned}
$$

Crucial property: With high probability ϕ is collision-free on substrings of T, i.e., $\phi\left(S_{1}\right)=\phi\left(S_{2}\right)$ iff $S_{1}=S_{2}$.
Also important: $\phi(T[i \ldots j+1])$ can be computed from $\phi(T[i \ldots j])$ in $O(1)$ time.

A Randomized Solution (Monte Carlo)

How to answer a query
Idea: Store fingerprints of suffixes starting at every τ 'th position in T.

A Randomized Solution (Monte Carlo)

How to answer a query

Idea: Store fingerprints of suffixes starting at every τ 'th position in T.

Observation: If S is block aligned we can compute $\phi(S)$ in $O(1)$ time. Otherwise, the time needed is $O(\tau)$.

A Randomized Solution (Monte Carlo)

How to answer a query

Idea: Store fingerprints of suffixes starting at every τ 'th position in T.

Observation: If S is block aligned we can compute $\phi(S)$ in $O(1)$ time. Otherwise, the time needed is $O(\tau)$.

A Randomized Solution (Monte Carlo)

How to answer a query
Idea: Store fingerprints of suffixes starting at every τ 'th position in T.

A Randomized Solution (Monte Carlo)

How to answer a query
Idea: Store fingerprints of suffixes starting at every τ 'th position in T.

A Randomized Solution (Monte Carlo)

How to answer a query
Idea: Store fingerprints of suffixes starting at every τ 'th position in T.

A Randomized Solution (Monte Carlo)

How to answer a query
Idea: Store fingerprints of suffixes starting at every τ 'th position in T.

A Randomized Solution (Monte Carlo)

How to answer a query
Idea: Store fingerprints of suffixes starting at every τ 'th position in T.

A Randomized Solution (Monte Carlo)

How to answer a query
Idea: Store fingerprints of suffixes starting at every τ 'th position in T.

A Randomized Solution (Monte Carlo)

How to answer a query
Idea: Store fingerprints of suffixes starting at every τ 'th position in T.

A Randomized Solution (Monte Carlo)

How to answer a query
Idea: Store fingerprints of suffixes starting at every τ 'th position in T.

A Randomized Solution (Monte Carlo)

How to answer a query
Idea: Store fingerprints of suffixes starting at every τ 'th position in T.

A Randomized Solution (Monte Carlo)

How to answer a query
Idea: Store fingerprints of suffixes starting at every τ 'th position in T.

A Randomized Solution (Monte Carlo)

How to answer a query

Idea: Store fingerprints of suffixes starting at every τ 'th position in T.

Analysis

Time: Only $O\left(\log \left(\frac{\operatorname{LCE}}{\tau}\right)\right)$ fingerprint comparisons each taking time $O(\tau)$. Hence query time $O\left(\tau \log \left(\frac{\text { LCE }}{\tau}\right)\right)$.
Space: $O\left(\frac{n}{\tau}\right)$.

A Randomized Solution (Las Vegas)

Question: Can we verify that ϕ is collision free during preprocessing?

A Randomized Solution (Las Vegas)

Question: Can we verify that ϕ is collision free during preprocessing? Challenge: Doing this quickly while using $O\left(\frac{n}{\tau}\right)$ space.

A Randomized Solution (Las Vegas)

Question: Can we verify that ϕ is collision free during preprocessing? Challenge: Doing this quickly while using $O\left(\frac{n}{\tau}\right)$ space.

Observation: Whenever we compare two fingerprints, we can ensure that one of them is of the form $T\left[j \tau \ldots j \tau+\tau \cdot 2^{\ell}-1\right]$ for some ℓ, j

A Randomized Solution (Las Vegas)

Question: Can we verify that ϕ is collision free during preprocessing? Challenge: Doing this quickly while using $O\left(\frac{n}{\tau}\right)$ space.
Observation: Whenever we compare two fingerprints, we can ensure that one of them is of the form $T\left[j \tau \ldots j \tau+\tau \cdot 2^{\ell}-1\right]$ for some ℓ, j
... this cuts down the number of fingerprints we need to check!

A Randomized Solution (Las Vegas)

Question: Can we verify that ϕ is collision free during preprocessing?
Challenge: Doing this quickly while using $O\left(\frac{n}{\tau}\right)$ space.
Observation: Whenever we compare two fingerprints, we can ensure that one of them is of the form $T\left[j \tau \ldots j \tau+\tau \cdot 2^{\ell}-1\right]$ for some ℓ, j
... this cuts down the number of fingerprints we need to check!

General idea: For each $\ell \geq 0$ in increasing order, check that for all i, j,

$$
\begin{aligned}
& \phi\left(T\left[i \ldots i+\tau \cdot 2^{\ell}-1\right]\right)=\phi\left(T\left[j \tau \ldots j \tau+\tau \cdot 2^{\ell}-1\right]\right) \\
& \text { iff } \quad T\left[i \ldots i+\tau \cdot 2^{\ell}-1\right]=T\left[j \tau \ldots j \tau+\tau \cdot 2^{\ell}-1\right] \\
& T=\square \\
& \phi\left(T\left[i \ldots i+\tau \cdot 2^{\ell}-1\right]\right)
\end{aligned}
$$

A Randomized Solution (Las Vegas)

Question: Can we verify that ϕ is collision free during preprocessing?
Challenge: Doing this quickly while using $O\left(\frac{n}{\tau}\right)$ space.
Observation: Whenever we compare two fingerprints, we can ensure that one of them is of the form $T\left[j \tau \ldots j \tau+\tau \cdot 2^{\ell}-1\right]$ for some ℓ, j
... this cuts down the number of fingerprints we need to check!

General idea: For each $\ell \geq 0$ in increasing order, check that for all i, j,

$$
\begin{aligned}
& \phi\left(T\left[i \ldots i+\tau \cdot 2^{\ell}-1\right]\right)=\phi\left(T\left[j \tau \ldots j \tau+\tau \cdot 2^{\ell}-1\right]\right) \\
& \text { iff } T\left[i \ldots i+\tau \cdot 2^{\ell}-1\right]=T\left[j \tau \ldots j \tau+\tau \cdot 2^{\ell}-1\right] \\
& \phi\left(T\left[i \ldots i+\tau \cdot 2^{\ell}-1\right]\right)=\phi\left(T\left[j \tau \ldots j \tau+\tau \cdot 2^{\ell}-1\right]\right)
\end{aligned}
$$

A Randomized Solution (Las Vegas)

Question: Can we verify that ϕ is collision free during preprocessing?
Challenge: Doing this quickly while using $O\left(\frac{n}{\tau}\right)$ space.
Observation: Whenever we compare two fingerprints, we can ensure that one of them is of the form $T\left[j \tau \ldots j \tau+\tau \cdot 2^{\ell}-1\right]$ for some ℓ, j
... this cuts down the number of fingerprints we need to check!

General idea: For each $\ell \geq 0$ in increasing order, check that for all i, j,

$$
\begin{aligned}
& \phi\left(T\left[i \ldots i+\tau \cdot 2^{\ell}-1\right]\right)=\phi\left(T\left[j \tau \ldots j \tau+\tau \cdot 2^{\ell}-1\right]\right) \\
& \text { iff } T\left[i \ldots i+\tau \cdot 2^{\ell}-1\right]=T\left[j \tau \ldots j \tau+\tau \cdot 2^{\ell}-1\right] \\
& \phi\left(T\left[i \ldots i+\tau \cdot 2^{\ell}-1\right]\right)=\phi\left(T\left[j \tau \ldots j \tau+\tau \cdot 2^{\ell}-1\right]\right)
\end{aligned}
$$

$$
\begin{aligned}
& \phi\left(T\left[i \ldots i+\tau \cdot 2^{\ell-1}-1\right]\right) \stackrel{?}{=} \phi\left(T\left[j \tau \ldots j \tau+\tau \cdot 2^{\ell-1}-1\right]\right)
\end{aligned}
$$

A Randomized Solution (Las Vegas)

Question: Can we verify that ϕ is collision free during preprocessing?
Challenge: Doing this quickly while using $O\left(\frac{n}{\tau}\right)$ space.
Observation: Whenever we compare two fingerprints, we can ensure that one of them is of the form $T\left[j \tau \ldots j \tau+\tau \cdot 2^{\ell}-1\right]$ for some ℓ, j
... this cuts down the number of fingerprints we need to check!

General idea: For each $\ell \geq 0$ in increasing order, check that for all i, j,

$$
\begin{aligned}
& \phi\left(T\left[i \ldots i+\tau \cdot 2^{\ell}-1\right]\right)=\phi\left(T\left[j \tau \ldots j \tau+\tau \cdot 2^{\ell}-1\right]\right) \\
& \text { iff } T\left[i \ldots i+\tau \cdot 2^{\ell}-1\right]=T\left[j \tau \ldots j \tau+\tau \cdot 2^{\ell}-1\right] \\
& \phi\left(T\left[i \ldots i+\tau \cdot 2^{\ell}-1\right]\right)=\phi\left(T\left[j \tau \ldots j \tau+\tau \cdot 2^{\ell}-1\right]\right)
\end{aligned}
$$

$$
\begin{aligned}
& \phi\left(T\left[i+\tau \cdot 2^{\ell-1} \ldots i+\tau \cdot 2^{\ell}-1\right]\right) \\
& \stackrel{?}{=} \phi\left(T\left[j \tau+\tau \cdot 2^{\ell-1} \ldots j \tau+\tau \cdot 2^{\ell}-1\right]\right)
\end{aligned}
$$

Conclusions

We gave three time-space trade-offs for LCE on a single string:

- A deterministic solution
- $O(\tau)$ query time
- $O(n / \sqrt{\tau})$ space (even during preprocessing)
- $O\left(n^{2} / \sqrt{\tau}\right)$ preprocessing time
- A Monte-Carlo solution
- $O(\tau \log (\operatorname{LCE}(i, j) / \tau))$ query time (correct with high prob.)
- $O(n / \tau)$ space (even during preprocessing)
- $O(n)$ preprocessing time.
- A Las-Vegas solution
- $O(\tau \log (\operatorname{LCE}(i, j) / \tau))$ query time (correct with certainty)
- $O(n / \tau)$ space (even during preprocessing)
- $O(n \log n)$ preprocessing time with high prob.

Conclusions

We gave three time-space trade-offs for LCE on two strings:

- A deterministic solution
- $O(\tau)$ query time
- $O(n / \tau+m / \sqrt{\tau})$ space (even during preprocessing)
- $O(n m / \sqrt{\tau})$ preprocessing time
- A Monte-Carlo solution
- $O(\tau \log (\operatorname{LCE}(i, j) / \tau))$ query time (correct with high prob.)
- $O((n+m) / \tau)$ space (even during preprocessing)
- $O(n)$ preprocessing time.
- A Las-Vegas solution
- $O(\tau \log (\operatorname{LCE}(i, j) / \tau))$ query time (correct with certainty)
- $O((n+m) / \tau)$ space (even during preprocessing)
- $O(n \log n)$ preprocessing time with high prob.

[^0]: ${ }^{1}$ C. J. Colbourn and A. C. Ling. Quorums from difference covers. Inf. Process. Lett. 75(1-2):9-12, 2000

