Time-Space Trade-Offs for Longest Common Extensions

Philip Bille¹, Inge Li Gørtz¹, Benjamin Sach², and Hjalte Wedel Vildhøj¹

¹Technical University of Denmark, DTU Informatics, {phbi,ilg,hwvi}@imm.dtu.dk ²University of Warwick, Department of Computer Science, sach@dcs.warwick.ac.uk

> CPM 2012, Helsinki July 4, 2012

The Longest Common Extension Problem

Problem: Preprocess a string *T* of length *n* to support LCE queries:

► LCE(*i*, *j*) = The length of the longest common prefix of the suffixes starting at position *i* and *j* in *T*.

Example

LCE(2, 4) = ?

The Longest Common Extension Problem

Problem: Preprocess a string *T* of length *n* to support LCE queries:

► LCE(*i*, *j*) = The length of the longest common prefix of the suffixes starting at position *i* and *j* in *T*.

Example

$$T = \begin{array}{cccc} \begin{smallmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ b & a & n & a & n & a & s \\ & & \uparrow & & & & & \\ & & a & n & a & s & \\ & & a & n & a & n & a & s \end{array}$$

LCE(2, 4) = ?

The Longest Common Extension Problem Definition

Problem: Preprocess a string *T* of length *n* to support LCE queries:

► LCE(*i*, *j*) = The length of the longest common prefix of the suffixes starting at position *i* and *j* in *T*.

Example

$$T = \begin{array}{cccc} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ b & a & n & a & n & a & s \\ & & & \uparrow & & \\ & & a & n & a & s \\ & & a & n & a & n & a & s \end{array}$$

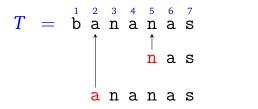
LCE(2, 4) = 3

The Longest Common Extension Problem

Problem: Preprocess a string *T* of length *n* to support LCE queries:

► LCE(*i*, *j*) = The length of the longest common prefix of the suffixes starting at position *i* and *j* in *T*.

Example



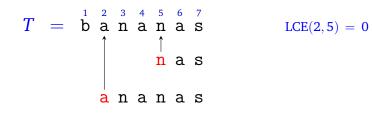
LCE(2,5) = 0

The Longest Common Extension Problem

Problem: Preprocess a string *T* of length *n* to support LCE queries:

► LCE(*i*, *j*) = The length of the longest common prefix of the suffixes starting at position *i* and *j* in *T*.

Example



We assume that the input is given in read-only memory and is not included in the space complexity.

#1: Store nothing $T = \begin{array}{c} \overset{1}{b} \overset{2}{a} \overset{3}{n} \overset{4}{a} \overset{5}{n} \overset{6}{a} \overset{7}{s} \\ & \uparrow & \uparrow \\ & i & j \end{array}$

#1: Store nothing $\frac{1}{2} \frac{2}{3} \frac{3}{4} \frac{4}{5} \frac{5}{6} \frac{6}{7}$

$$T = b a n a n a s$$

 $\uparrow \qquad \uparrow$
 $i \qquad j$

#1: Store nothing $T = \begin{array}{c} \overset{1}{b} \overset{2}{a} \overset{3}{n} \overset{4}{a} \overset{5}{n} \overset{6}{a} \overset{7}{s} \\ & \uparrow & \uparrow \\ & i & j \end{array}$

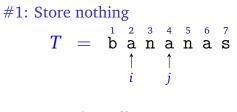
#1: Store nothing $T = \overset{1}{b} \overset{2}{a} \overset{3}{n} \overset{4}{a} \overset{5}{n} \overset{6}{a} \overset{7}{s}$

$$= \begin{array}{c} \begin{array}{c} 1 \\ a \\ n \\ a \\ \\ \\ \\ i \\ \end{array} \begin{array}{c} 1 \\ i \\ j \end{array} \right)$$

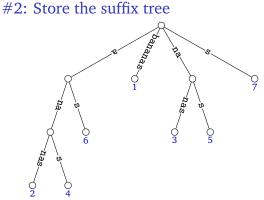
#1: Store nothing $T = \begin{array}{c} \overset{1}{\mathbf{b}} \overset{2}{\mathbf{a}} \overset{3}{\mathbf{n}} \overset{4}{\mathbf{n}} \overset{5}{\mathbf{a}} \overset{6}{\mathbf{n}} \overset{7}{\mathbf{a}} \overset{7}{\mathbf{a}} \overset{1}{\mathbf{s}} \overset{1$

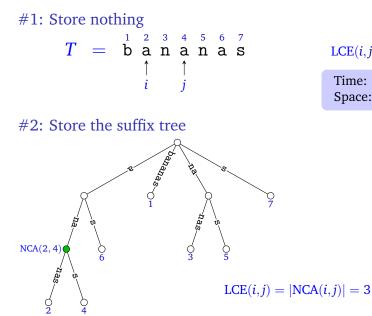
LCE
$$(i,j) = 3$$

Time: $O(n)$
Space: $O(1)$

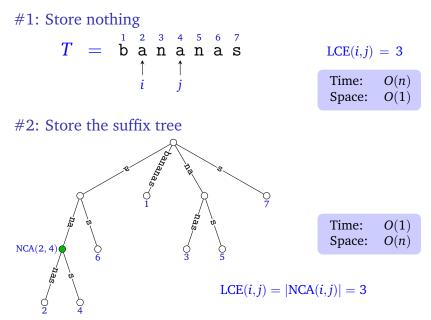


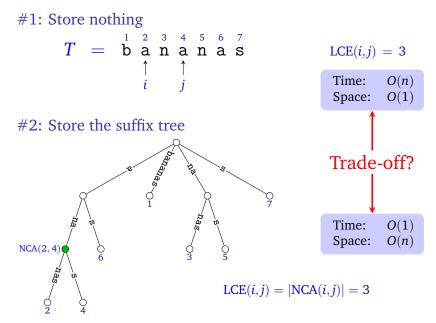
Time:	O(n)
Space:	O(1)





LCE(i,j) = 3Time: O(n)Space: O(1)



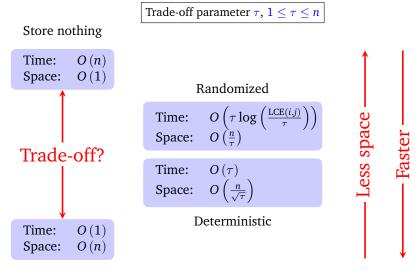


Our Results



Store suffix tree

Our Results



Store suffix tree

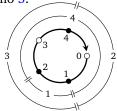
Idea: Store a subset of the *n* suffixes in a compacted trie.

Difference Covers

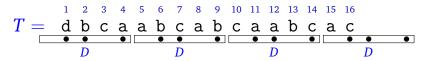
A difference cover modulo τ is a set of integers $D \subseteq \{0, 1, ..., \tau - 1\}$ such that for any distance $d \in \{0, 1, ..., \tau - 1\}$, *D* contains two elements separated by distance *d* modulo τ .

Ex: The set $D = \{1, 2, 4\}$ is a difference cover modulo 5.

d	0	1	2	3	4
i,j	1,1	2,1	1,4	4,1	1,2



Idea: Store a subset of the *n* suffixes in a compacted trie.

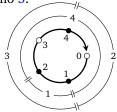


Difference Covers

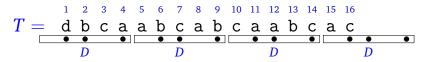
A difference cover modulo τ is a set of integers $D \subseteq \{0, 1, ..., \tau - 1\}$ such that for any distance $d \in \{0, 1, ..., \tau - 1\}$, D contains two elements separated by distance d modulo τ .

Ex: The set $D = \{1, 2, 4\}$ is a difference cover modulo 5.

d	0	1	2	3	4
i,j	1,1	2,1	1,4	4,1	1,2



Idea: Store a subset of the *n* suffixes in a compacted trie.



Lemma (Colbourn and Ling¹)

For any τ , a difference cover modulo τ of size at most $\sqrt{1.5\tau} + 6$ can be computed in $O(\sqrt{\tau})$ time.

Analysis **Time:** $O(\tau)$ **Space:** O(#stored suffixes $) = O\left(\frac{n}{\tau}|D|\right) = O\left(\frac{n}{\sqrt{\tau}}\right)$

¹C. J. Colbourn and A. C. Ling. Quorums from difference covers. Inf. Process. Lett. 75(1-2):9–12, 2000

Rabin-Karp Fingerprints

Let *p* be a sufficiently large prime and choose $b \in \mathbb{Z}_p$ uniformly at random.

$$\phi(S) = \sum_{k=1}^{|S|} S[k] b^k \bmod p \,.$$

Rabin-Karp Fingerprints

Let *p* be a sufficiently large prime and choose $b \in \mathbb{Z}_p$ uniformly at random.

$$\phi(S) = \sum_{k=1}^{|S|} S[k]b^k \mod p$$

Rabin-Karp Fingerprints

Let *p* be a sufficiently large prime and choose $b \in \mathbb{Z}_p$ uniformly at random.

$$\phi(S) = \sum_{k=1}^{|S|} S[k] b^k \bmod p$$

Crucial property: With high probability ϕ is collision-free on substrings of *T*, i.e., $\phi(S_1) = \phi(S_2)$ iff $S_1 = S_2$.

Rabin-Karp Fingerprints

Let *p* be a sufficiently large prime and choose $b \in \mathbb{Z}_p$ uniformly at random.

$$\phi(S) = \sum_{k=1}^{|S|} S[k] b^k \bmod p$$

Crucial property: With high probability ϕ is collision-free on substrings of *T*, i.e., $\phi(S_1) = \phi(S_2)$ iff $S_1 = S_2$.

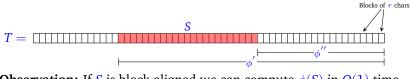
Also important: $\phi(T[i \dots j+1])$ can be computed from $\phi(T[i \dots j])$ in O(1) time.

How to answer a query

Idea: Store fingerprints of suffixes starting at every τ 'th position in *T*.

How to answer a query

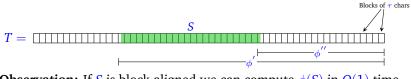
Idea: Store fingerprints of suffixes starting at every τ 'th position in *T*.



Observation: If *S* is block aligned we can compute $\phi(S)$ in O(1) time. Otherwise, the time needed is $O(\tau)$.

How to answer a query

Idea: Store fingerprints of suffixes starting at every τ 'th position in *T*.

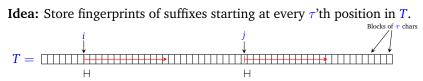


Observation: If *S* is block aligned we can compute $\phi(S)$ in O(1) time. Otherwise, the time needed is $O(\tau)$.

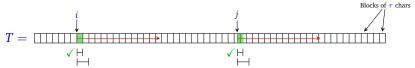
How to answer a query

Idea: Store fingerprints of suffixes starting at every τ 'th position in *T*.

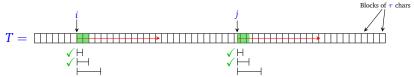
How to answer a query



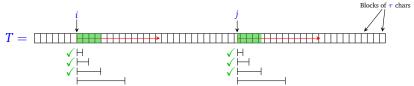
How to answer a query



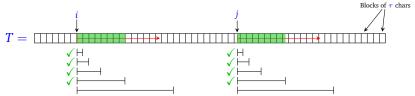
How to answer a query



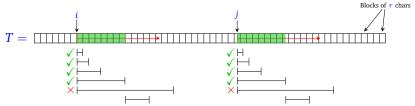
How to answer a query



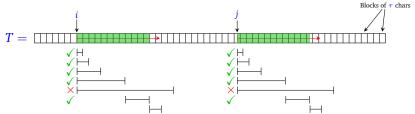
How to answer a query



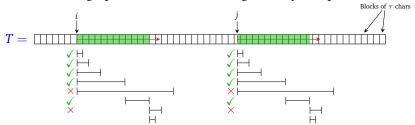
How to answer a query



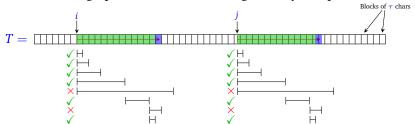
How to answer a query



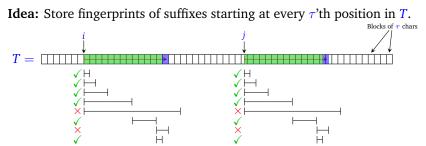
How to answer a query



How to answer a query



How to answer a query



Analysis

Time: Only $O(\log(\frac{\text{LCE}}{\tau}))$ fingerprint comparisons each taking time $O(\tau)$. Hence query time $O(\tau \log(\frac{\text{LCE}}{\tau}))$.

Space: $O\left(\frac{n}{\tau}\right)$.

Question: Can we verify that ϕ is collision free during preprocessing?

Question: Can we verify that ϕ is collision free during preprocessing? **Challenge:** Doing this quickly while using $O(\frac{n}{\tau})$ space.

Question: Can we verify that ϕ is collision free during preprocessing? **Challenge:** Doing this quickly while using $O(\frac{n}{\tau})$ space.

Observation: Whenever we compare two fingerprints, we can ensure that one of them is of the form $T[j\tau \dots j\tau + \tau \cdot 2^{\ell} - 1]$ for some ℓ, j

Question: Can we verify that ϕ is collision free during preprocessing? **Challenge:** Doing this quickly while using $O(\frac{n}{\tau})$ space.

Observation: Whenever we compare two fingerprints, we can ensure that one of them is of the form $T[j\tau \dots j\tau + \tau \cdot 2^{\ell} - 1]$ for some ℓ, j

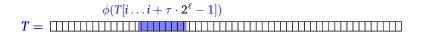
... this cuts down the number of fingerprints we need to check!

Question: Can we verify that ϕ is collision free during preprocessing? **Challenge:** Doing this quickly while using $O(\frac{n}{\tau})$ space.

Observation: Whenever we compare two fingerprints, we can ensure that one of them is of the form $T[j\tau \dots j\tau + \tau \cdot 2^{\ell} - 1]$ for some ℓ, j

... this cuts down the number of fingerprints we need to check!

General idea: For each $\ell \ge 0$ in increasing order, check that for all i, j, $\phi(T[i \dots i + \tau \cdot 2^{\ell} - 1]) = \phi(T[j\tau \dots j\tau + \tau \cdot 2^{\ell} - 1])$ iff $T[i \dots i + \tau \cdot 2^{\ell} - 1] = T[j\tau \dots j\tau + \tau \cdot 2^{\ell} - 1]$

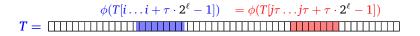


Question: Can we verify that ϕ is collision free during preprocessing? **Challenge:** Doing this quickly while using $O(\frac{n}{\tau})$ space.

Observation: Whenever we compare two fingerprints, we can ensure that one of them is of the form $T[j\tau \dots j\tau + \tau \cdot 2^{\ell} - 1]$ for some ℓ, j

... this cuts down the number of fingerprints we need to check!

General idea: For each $\ell \ge 0$ in increasing order, check that for all i, j, $\phi(T[i \dots i + \tau \cdot 2^{\ell} - 1]) = \phi(T[j\tau \dots j\tau + \tau \cdot 2^{\ell} - 1])$ iff $T[i \dots i + \tau \cdot 2^{\ell} - 1] = T[j\tau \dots j\tau + \tau \cdot 2^{\ell} - 1]$



Question: Can we verify that ϕ is collision free during preprocessing? **Challenge:** Doing this quickly while using $O(\frac{n}{\tau})$ space.

Observation: Whenever we compare two fingerprints, we can ensure that one of them is of the form $T[j\tau \dots j\tau + \tau \cdot 2^{\ell} - 1]$ for some ℓ, j

... this cuts down the number of fingerprints we need to check!

General idea: For each $\ell \ge 0$ in increasing order, check that for all i, j,
$$\begin{split} \phi(T[i \dots i + \tau \cdot 2^{\ell} - 1]) &= \phi(T[j\tau \dots j\tau + \tau \cdot 2^{\ell} - 1]) \\ \text{iff} \quad T[i \dots i + \tau \cdot 2^{\ell} - 1] &= \quad T[j\tau \dots j\tau + \tau \cdot 2^{\ell} - 1] \end{split}$$

$$\begin{split} \phi(T[i\dots i+\tau\cdot 2^{\ell}-1]) &= \phi(T[j\tau\dots j\tau+\tau\cdot 2^{\ell}-1])\\ T &= & \\ \phi(T[i\dots i+\tau\cdot 2^{\ell-1}-1]) &\stackrel{?}{=} \phi(T[j\tau\dots j\tau+\tau\cdot 2^{\ell-1}-1]) \end{split}$$

Question: Can we verify that ϕ is collision free during preprocessing? **Challenge:** Doing this quickly while using $O(\frac{n}{\tau})$ space.

Observation: Whenever we compare two fingerprints, we can ensure that one of them is of the form $T[j\tau \dots j\tau + \tau \cdot 2^{\ell} - 1]$ for some ℓ, j

... this cuts down the number of fingerprints we need to check!

General idea: For each $\ell \ge 0$ in increasing order, check that for all i, j, $\phi(T[i \dots i + \tau \cdot 2^{\ell} - 1]) = \phi(T[j\tau \dots j\tau + \tau \cdot 2^{\ell} - 1])$ iff $T[i \dots i + \tau \cdot 2^{\ell} - 1] = T[j\tau \dots j\tau + \tau \cdot 2^{\ell} - 1]$

$$\begin{split} \phi(T[i\dots i+\tau\cdot 2^{\ell}-1]) &= \phi(T[j\tau\dots j\tau+\tau\cdot 2^{\ell}-1])\\ T &= & \\ \phi(T[i+\tau\cdot 2^{\ell-1}\dots i+\tau\cdot 2^{\ell}-1])\\ &\stackrel{?}{=} \phi(T[j\tau+\tau\cdot 2^{\ell-1}\dots j\tau+\tau\cdot 2^{\ell}-1]) \end{split}$$

Conclusions

We gave three time-space trade-offs for LCE on a single string:

- A deterministic solution
 - $O(\tau)$ query time
 - $O(n/\sqrt{\tau})$ space (even during preprocessing)
 - $O(n^2/\sqrt{\tau})$ preprocessing time
- A Monte-Carlo solution
 - $O(\tau \log (\text{LCE}(i,j)/\tau))$ query time (correct with high prob.)
 - $O(n/\tau)$ space (even during preprocessing)
 - O(n) preprocessing time.
- A Las-Vegas solution
 - $O(\tau \log (\text{LCE}(i, j) / \tau))$ query time (correct with certainty)
 - $O(n/\tau)$ space (even during preprocessing)
 - $O(n \log n)$ preprocessing time with high prob.

Conclusions

We gave three time-space trade-offs for LCE on two strings:

- A deterministic solution
 - $O(\tau)$ query time
 - $O(n/\tau + m/\sqrt{\tau})$ space (even during preprocessing)
 - $O(nm/\sqrt{\tau})$ preprocessing time
- A Monte-Carlo solution
 - $O(\tau \log (\text{LCE}(i,j)/\tau))$ query time (correct with high prob.)
 - $O((n+m)/\tau)$ space (even during preprocessing)
 - O(n) preprocessing time.
- A Las-Vegas solution
 - $O(\tau \log (\text{LCE}(i,j)/\tau))$ query time (correct with certainty)
 - $O((n+m)/\tau)$ space (even during preprocessing)
 - $O(n \log n)$ preprocessing time with high prob.